首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   442篇
  免费   39篇
  2021年   2篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   8篇
  2015年   16篇
  2014年   16篇
  2013年   35篇
  2012年   20篇
  2011年   25篇
  2010年   29篇
  2009年   33篇
  2008年   22篇
  2007年   26篇
  2006年   23篇
  2005年   21篇
  2004年   17篇
  2003年   11篇
  2002年   8篇
  2001年   11篇
  2000年   8篇
  1999年   7篇
  1998年   11篇
  1997年   11篇
  1996年   5篇
  1995年   12篇
  1994年   4篇
  1993年   9篇
  1991年   5篇
  1990年   1篇
  1989年   4篇
  1988年   7篇
  1987年   1篇
  1986年   4篇
  1985年   4篇
  1984年   5篇
  1983年   4篇
  1982年   16篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   5篇
  1976年   4篇
  1975年   3篇
  1972年   2篇
  1971年   1篇
  1941年   2篇
  1929年   2篇
  1907年   2篇
排序方式: 共有481条查询结果,搜索用时 875 毫秒
81.
82.

Background

Sitagliptin, a highly selective dipeptidyl peptidase-4 inhibitor, is the first in a new class of oral antihyperglycemic agents (AHAs) for the treatment of patients with type 2 diabetes. Type 2 diabetes is a life-long disease requiring chronic treatment and management. Therefore, robust assessment of the long-term safety and tolerability of newer therapeutic agents is of importance. The purpose of this analysis was to assess the safety and tolerability of sitagliptin by pooling 12 large, double-blind, Phase IIb and III studies up to 2 years in duration. Methods: This analysis included 6139 patients with type 2 diabetes receiving either sitagliptin 100 mg/day (N = 3415) or a comparator agent (placebo or an active comparator) (N = 2724; non-exposed group). The 12 studies from which this pooled population was drawn represent the double-blind, randomized, Phase IIB and III studies that included patients treated with the clinical dose of sitagliptin (100 mg/day) for at least 18 weeks up to 2 years and that were available in a single safety database as of November 2007. These 12 studies assessed sitagliptin as monotherapy, initial combination therapy with metformin, or add-on combination therapy with other oral AHAs (metformin, pioglitazone, sulfonylurea, sulfonylurea + metformin, or metformin + rosiglitazone). Patients in the non-exposed group were taking placebo, pioglitazone, metformin, sulfonylurea, sulfonylurea + metformin, or metformin + rosiglitazone. This safety analysis used patient-level data from each study to evaluate clinical and laboratory adverse experiences.

Results

For clinical adverse experiences, the incidence rates of adverse experiences overall, serious adverse experiences, and discontinuations due to adverse experiences were similar in the sitagliptin and non-exposed groups. The incidence rates of specific adverse experiences were also generally similar in the two groups, with the exception of an increased incidence rate of hypoglycemia observed in the non-exposed group. The incidence rates of drug-related adverse experiences overall and discontinuations due to drug-related adverse experiences were higher in the non-exposed group, primarily due to the increased incidence rate of hypoglycemia in this group. For cardiac- and ischemia-related adverse experiences (including serious events), there were no meaningful between-group differences. No meaningful differences between groups in laboratory adverse experiences, either summary measures or specific adverse experiences, were observed.

Conclusion

In patients with type 2 diabetes, sitagliptin 100 mg/day was well tolerated in clinical trials up to 2 years in duration.  相似文献   
83.
Cannabinoid 1 receptor (CB1R) inverse agonists are emerging as a potential obesity therapy. However, the physiological mechanisms by which these agents modulate human energy balance are incompletely elucidated. Here, we describe a comprehensive clinical research study of taranabant, a structurally novel acyclic CB1R inverse agonist. Positron emission tomography imaging using the selective CB1R tracer [(18)F]MK-9470 confirmed central nervous system receptor occupancy levels ( approximately 10%-40%) associated with energy balance/weight-loss effects in animals. In a 12-week weight-loss study, taranabant induced statistically significant weight loss compared to placebo in obese subjects over the entire range of evaluated doses (0.5, 2, 4, and 6 mg once per day) (p < 0.001). Taranabant treatment was associated with dose-related increased incidence of clinical adverse events, including mild to moderate gastrointestinal and psychiatric effects. Mechanism-of-action studies suggest that engagement of the CB1R by taranabant leads to weight loss by reducing food intake and increasing energy expenditure and fat oxidation.  相似文献   
84.
85.
There is a need for safe medications that can effectively support recovery by treating symptoms of protracted abstinence that may precipitate relapse in alcoholics, e.g. craving and disturbances in sleep and mood. This proof-of-concept study reports on the effectiveness of gabapentin 1200 mg for attenuating these symptoms in a non-treatment-seeking sample of cue-reactive, alcohol-dependent individuals. Subjects were 33 paid volunteers with current Diagnostic and Statistical Manual of Mental Disorders-IV alcohol dependence and a strength of craving rating 1 SD or greater for alcohol than water cues. Subjects were randomly assigned to gabapentin or placebo for 1 week and then participated in a within-subjects trial where each was exposed to standardized sets of pleasant, neutral and unpleasant visual stimuli followed by alcohol or water cues. Gabapentin was associated with significantly greater reductions than placebo on several measures of subjective craving for alcohol as well as for affectively evoked craving. Gabapentin was also associated with significant improvement on several measures of sleep quality. Side effects were minimal, and gabapentin effects were not found to resemble any major classes of abused drugs. Results suggest that gabapentin may be effective for treating the protracted abstinence phase in alcohol dependence and that a randomized clinical trial would be an appropriate next step. The study also suggests the value of cue-reactivity studies as proof-of-concept screens for potential antirelapse drugs.  相似文献   
86.
87.

Background  

Bet v 1 is an important cause of hay fever in northern Europe. Bet v 1 isoforms from the European white birch (Betula pendula) have been investigated extensively, but the allergenic potency of other birch species is unknown. The presence of Bet v 1 and closely related PR-10 genes in the genome was established by amplification and sequencing of alleles from eight birch species that represent the four subgenera within the genus Betula. Q-TOF LC-MSE was applied to identify which PR-10/Bet v 1 genes are actually expressed in pollen and to determine the relative abundances of individual isoforms in the pollen proteome.  相似文献   
88.
The hypersensitive response (HR) is a cell death phenomenon associated with localized resistance to pathogens. Biphasic patterns in the generation of H2O2, salicylic acid and ethylene have been observed in tobacco during the early stages of the HR. These biphasic models reflect an initial elicitation by pathogen-associated molecular patterns followed by a second phase, induced by pathogen-encoded avirulence gene products. The first phase has been proposed to potentiate the second, to increase the efficacy of plant resistance to disease. This potentiation is comparable to the “priming” of plant defenses which is seen when plants display systemic resistance to disease. The events regulating the generation of the biphasic wave, or priming, remains obscure, however recently we demonstrated a key role for nitric oxide in this process in a HR occurring in tobacco. Here we use laser photoacoustic detection to demonstrate that biphasic ethylene production also occurs during a HR occurring in Arabidopsis. We suggest that ethylene emanation during the HR represents a ready means of visualising biphasic events during the HR and that exploiting the genomic resources offered by this model species will facilitate the development of a mechanistic understanding of potentiating/priming processes.Key words: hypersensitive response, biphasic patterns, potentiation, defense priming, ethylene, ArabidopsisThe Hypersensitive Response (HR) is a cell death process which occurs at the site of attempted pathogen attack and which has been associated with host resistance.1 Much work on the regulation of the HR has indicated the importance of H2O2,2 and NO.3 A feature of H2O2 generation during the HR is its biphasic pattern (Fig. 1A). The first rise reflects elicitation by pathogen-associated molecular patterns (PAMPs)4 and the second reflects the interaction between a pathogen-encoded avirulence (avr) gene product with a plant resistance (R) gene. A key aspect of the first rise is the initiation of salicylic acid (SA) synthesis which potentiates the second rise and hence the potency of plant defense and the HR.5Open in a separate windowFigure 1Patterns of defense signal generation during the Pseudomonas syringae pv. phaseolicola elicited-hypersensitive response in tobacco (Nicotiana tabacum). Generation of (A) H2O2 (●, Mur18); (B) nitric oxide (◇; Mur12 (C) salicylic acid (SA, ■19) and (D) ethylene (○ Mur9) during a HR elicited by Pseudomonas syringae pv. phaseolicola (Psph) in tobacco cv. Samsun NN. In (A) a phase where SA acts to augment the second rise in H2O2—the potentiation phase—is highlighted. The potentiation phase is likely to be similar to defense “priming”.6 Methodological details are contained within the appropriate references. (E) A possible model for biphasic defense signal regulation during the Psph-elicited HR in tobacco. During an initial phase NO and H2O2 act to initiate SA biosynthesis, where SA and NO act to initiate a “H2O2 biphasic switch”. This could initially suppress both SA and the H2O2 generation but subsequently acts to potentiate a second phase of H2O2 generation. This in turn increases SA biosynthesis which could act with NO to initiate the “C2H4 biphasic switch” to potentiate ethylene production. These (and other) signals contribute to initiation of the HR and SAR.This potentiation mechanism appears to be similar to defense priming; when whole plants display systemic resistance to disease as opposed to a localized resistance against pathogens. Priming can be initiated (the “primary stimulus”) following attack with a necrotizing pathogen (leading to “systemic acquired resistance”, SAR) or non-pathogenic rhizosphere bacteria (to confer “induced systemic resistance”, ISR). In the primed state a plant stimulates a range of plant defense genes, produces anti-microbial phytoalexins and deposits cell wall strengthening molecules, but only on imposition of a “secondary stimulus”.6 Such secondary stimuli include SA3 or PAMPs7 and is likely to be mechanistically similar to the potentiation step in the biphasic pattern of H2O2 generation (shaded in Fig. 1A). Accordingly, the two phases in the biphasic wave represent primary and secondary stimuli in priming.Highlighting a similarity between local HR-based events and priming, adds further impetus to efforts aiming to describe the underlying mechanism(s), however both phenomena remain poorly understood. Besides SA, both jasmonates and abscisic acid (ABA) have been shown to prime defenses as have a range of non-plant chemicals, with β-aminobutyric acid (BABA) being perhaps most widely used.6,8 Mutants which fail to exhibit BABA-mediated potentiation were defective in either a cyclin-dependent kinase-like protein, a polyphosphoinositide phosphatase or an ABA biosynthetic enzyme.8We have recently investigated biphasic ethylene production during the HR in tobacco elicited by the nonhost HR-eliciting bacterial pathogen Pseudomonas syringae pv. phaseolicola.9 As with H2O2 generation, this pattern reflected PAMP-and AVR-dependent elicitation events and included a SA-mediated potentiation stage. Crucially, we also showed that NO was a vital component in the SA-potentiation mechanism. When this finding is integrated with our other measurements of defense signal generation in the same host-pathogen system the complexity in the signaling network is revealed (Fig. 1). NO generation (Fig. 1B) appeared to be coincident with the first rise in H2O2 (Fig. 1A) which initiated SA biosynthesis10,11 and together would contribute to the first small, but transient, rise in that hormone (Fig. 1C). In line with established models5 this momentary rise in SA coincides with the potentiation phase (shaded in Fig. 1A) required to augment the second rise in ROS. However, ethylene production seems to be correlated poorly with the patterns of NO, H2O2 and SA (Fig. 1D). Nevertheless, biphasic ethylene production was found to reflect PAMP and AVR-dependent recognition and included a SA-mediated potentiation step.9 Hence, ethylene production could be used as a post-hoc indicator of the potentiation mechanism. Therefore, our discovery that the second wave of ethylene production—a “biphasic switch”—is influenced by NO acting with SA could also be relevant to the H2O2 generation. Significantly, the second phases in both H2O2 and ethylene production occur exactly where SA and NO production coincides; in the case of H2O2 generation 2–4 h post challenge and with ethylene 6 h onwards (Fig. 1E).Thus, ethylene production represents a readily assayable marker to indicate perturbations in the underlying biphasic and possible priming mechanisms. As we have demonstrated, laser photoacoustic detection (LAPD) is a powerful on-line approach to determine in planta ethylene production in tobacco9,12 but any mechanistic investigations would be greatly facilitated if the genetic resources offered by the model species Arabidopsis could be exploited.To address this, Arabidopsis Col-0 rosettes were vacuum infiltrated with either Pseudomonas syringae pv. tomato (Pst) avrRpm1 (HR-eliciting), the virulent Pst strain and the non-HR eliciting and non-virulent Pst hrpA strain. Ethylene production was monitored by LAPD (Fig. 2A). Significantly, Pst avrRpm1 initiated a biphasic pattern of ethylene production whose kinetics were very similar to that seen in tobacco (compare Figs. 2A with with1D).1D). Inoculations with Pst and Pst hrpA only displayed the first PAMP-dependent rise in ethylene production. Thus, these data establish that Arabidopsis can be used to investigate biphasic switch mechanism(s) in ethylene production during the HR and possibly defense priming. When considering such mechanisms, it is relevant to highlight the work of Foschi et al.13 who observed that biphasic activation of a monomeric G protein to cause phase-specific activation of different kinase cascades. Interestingly, ethylene has been noted to initiate biphasic activation of G proteins and kinases in Arabidopsis, although differing in kinetics to the phases seen during the HR.14 Further, plant defense priming has been associated with the increased accumulation of MAP kinase protein.6Open in a separate windowFigure 2Ethylene in the Pseudomonas syringae pv. tomato elicited-hypersensitive response in Arabidopsis thaliana. (A) Ethylene production from 5 week old short day (8 h light 100 µmol.m2.sec−1) grown Arabidopsis rosette leaves which were vacuum infiltrated with bacterial suspensions (2 × 106 colony forming units.ml−1) of Pseudomonas syringae pv. tomato (Pst) strains detected using laser photoacoustic detection (LAPD). Experimental details of the ethylene detection by LAPD are detailed in Mur et al.9 The intercellular spaces in leaves were infiltrated with the HR-eliciting strain Pst avrRpm1, (■), the virulent strain Pst (△) or the non-virulent and non-HR eliciting derivative, Pst hrpA (◇). (B) The appearance of Arabidopsis Col-0 and etr1-1 leaves at various h following injection with 2 × 106 c.f.u.mL−1 with of Pst avrRpm1. (C) Explants (1 cm diameter discs) from Arabidopsis leaf areas infiltrated with suspensions of Pst avrRpm1 were placed in a 1.5 cm diameter well, bathed in 1 mL de-ionized H2O. Changes in the conductivity of the bathing solution, as an indicator of electrolyte leakage from either wild type Col-0 (◆), mutants which were compromised in ethylene signaling; etr1-1 (□), ein2-2 (▲) or which overproduced ethylene; eto2-1 (●) were measured using a conductivity meter. Methodological details are set out in Mur et al.9A further point requires consideration; the role of ethylene as a direct contributor to plant defense.15 The contribution of ethylene to the HR has been disputed,16 but in tobacco we have observed that altered ethylene production influenced the formation of a P. syringae pv. phaseolicola elicited HR.9 In Arabidopsis, cell death in the ethylene receptor mutant etr1-1 following inoculation with Pst avrRpm1 is delayed compared to wild type (Fig. 2B). When electrolyte leakage was used to quantify Pst avrRpm1 cell death, both etr1-1 and the ethylene insensitive signaling mutant ein2-1 exhibited slower death than wild-type but in the ethylene overproducing mutant eto2, cell death was augmented (Fig. 2C). These data indicate that ethylene influences the kinetics of the HR.Taking these data together we suggest that the complexity of signal interaction during the HR or in SAR/ISR could be further dissected by combining the genetic resources of Arabidopsis with measurements of ethylene production using such sensitive approaches as LAPD.  相似文献   
89.

Background  

Glycosyl transferases transfer glycosyl groups onto their substrate. Localization partially defines their function. Glycosyl transferase 25 domain 1 (GLT25D1) was recently shown to have galactosyltransferase activity towards collagens and another well known substrate, mannose binding lectin (MBL). To gain more insight in the role of galactosylation of lysines in the Gly-X-Lys repeats of collagenous proteins, we investigated the subcellular localization of GLT25D1.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号