首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   11篇
  国内免费   2篇
  2024年   1篇
  2023年   2篇
  2022年   15篇
  2021年   20篇
  2020年   5篇
  2019年   8篇
  2018年   6篇
  2017年   10篇
  2016年   12篇
  2015年   25篇
  2014年   14篇
  2013年   34篇
  2012年   21篇
  2011年   25篇
  2010年   12篇
  2009年   16篇
  2008年   11篇
  2007年   8篇
  2006年   7篇
  2005年   6篇
  2004年   3篇
  2003年   5篇
  2002年   10篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1981年   1篇
  1979年   4篇
  1978年   1篇
  1972年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有315条查询结果,搜索用时 375 毫秒
51.
The pro-inflammatory cytokine interleukin (IL)-17 (also known as IL-17) has been associated with induction of tissue inflammation. Obese individuals exhibit many symptoms of chronic low-grade inflammation, suggesting that IL-17 may impact adipose tissue. However, the role of IL-17 in obesity is largely unexplored. Emerging studies indicate that obesity selectively promotes expansion of the Th17 T-cell lineage, exacerbating disease in murine models of autoimmunity such as EAE and colitis. Human studies support this concept, as new clinical studies suggest that IL-17 is expressed at elevated levels in obese individuals. Conversely, however, an anti-adipogenic role for IL-17 is becoming evident, and therefore the interconnections between IL-17 and fat metabolism may be quite complex. Here, we consolidate the potential implications of IL-17 in relation to obesity and describe the emerging data regarding the role of IL-17 in adipose tissue.  相似文献   
52.
53.
CD4 T cells are essential for immune control of γ-herpesvirus latency. We previously identified a murine MHC class II-restricted epitope in γ-herpesvirus-68 gp150 (gp150(67-83)I-A(b)) that elicits CD4 T cells that are maintained throughout long-term infection. However, it is unknown whether naive cells can be recruited into the antiviral CD4 T cell pool during latency. In this study, we generate a mouse transgenic for a gp150-specific TCR and show epitope-specific activation of transgenic CD4 T cells during acute and latent infections. Furthermore, although only dendritic cells can stimulate virus-specific CD8 T cells during latency, we show that both dendritic cells and B cells stimulate transgenic CD4 T cells. These studies demonstrate that naive CD4 T cells specific for a viral glycoprotein can be stimulated throughout infection, even during quiescent latency, suggesting that CD4 T cell memory is maintained in part by the continual recruitment of naive cells.  相似文献   
54.
CD38, a multifunctional enzyme that catalyzes the synthesis of intracellular Ca(2+) messengers, cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), is known to be expressed on platelets. However, the role of CD38 in platelets remains unclear. Our present results show that treatment of platelets with thrombin results in a rapid and sustained Ca(2+) signal, resulting from a coordinated interplay of Ca(2+)-mobilizing messengers, inositol 1,4,5-trisphosphate, cADPR, and NAADP. By dissecting the signaling pathway using various agents, we delineated that cADPR and NAADP are sequentially produced through CD38 internalization by protein kinase C via myosin heavy chain IIA following phospholipase C activation in thrombin-induced platelets. An inositol 1,4,5-trisphosphate receptor antagonist blocked the thrombin-induced formation of cADPR and NAADP as well as Ca(2+) signals. An indispensable response of platelets relying on cytosolic calcium is the surface exposure of phosphatidylserine (PS), which implicates platelet procoagulant activity. Scrutinizing this parameter reveals that CD38(+/+) platelets fully express PS on the surface when stimulated with thrombin, whereas this response was decreased on CD38(-/-) platelets. Similarly, PS exposure and Ca(2+) signals were attenuated when platelets were incubated with 8-bromo-cADPR, bafilomycin A1, and a PKC inhibitor. Furthermore, in vivo, CD38-deficient mice exhibited longer bleeding times and unstable formation of thrombus than wild type mice. These results demonstrate that CD38 plays an essential role in thrombin-induced procoagulant activity of platelets and hemostasis via Ca(2+) signaling mediated by its products, cADPR and NAADP.  相似文献   
55.
56.
Newcastle disease virus (NDV) is an infectious agent of a large variety of birds, including chicken, which poses a real threat to the agriculture industry. Matrix (M) proteins of NDV and many other viruses perform critical functions during viral assembly and budding from the host cell. M-proteins are well conserved and therefore are potential targets for antiviral therapies. To validate this, we expressed the NDV M-protein in its native form in Saccharomyces cerevisiae and in inclusion bodies in Escherichia coli. Proper refolding of the recombinant protein produced in E. coli was verified using circular dichroism and infrared spectroscopies and electron microscopy. Immunization of chickens with the NDV M-protein elicited significant serum antibody titers. However, the antibodies conferred little protection against the ND following lethal viral challenges. We conclude that the M-protein is not exposed on the surface of the host cell or the virus at any stage during its life cycle. We discuss how the conserved M-protein can further be exploited as an antiviral drug target.  相似文献   
57.
CD4 T cells play a cardinal role in orchestrating immune system. Differentiation of CD4 T cells to Th1 and Th2 effector subsets depends on multiple factors such as relative intensity of interactions between T cell receptor with peptide-major histocompatibility complex, cytokine milieu, antigen dose, and costimulatory molecules. Literature supports the critical role of peptide’s binding affinity to Human Leukocyte Antigens (HLAs) and in the differentiation of naïve CD4 T cells to Th1 and Th2 subsets. However, there exists no definite report addressing very precisely the correlation between physicochemical properties (hydrophobicity, hydrophilicity), pattern, position of amino acids in peptide and their role in skewing immune response towards Th1 and Th2 cells. This may play a significant role in designing peptide vaccines. Hence in the present study, we have evaluated the relationship between amino acid pattern and their influence in differentiation of Th1 and Th2 cells. We have used a data set of 320 peptides, whose role has been already established experimentally in the generation of either Th1 or Th2 immune response. Further, characterization was done based on binding affinity, promiscuity, amino acid pattern and binding conformation of peptides. We have observed that distinct amino acids in peptides elicit either Th1 or Th2 immunity. Consequently, this study signifies that alteration in the sequence and type of selected amino acids in the HLA class II binding peptides can modulate the differentiation of Th1 and Th2 cells. Therefore, this study may have an important implication in providing a platform for designing peptide-based vaccine candidates that can trigger desired Th1 or Th2 response.  相似文献   
58.
The assembly of the polyketide backbone of rifamycin B by the type I rifamycin polyketide synthase, encoded by the rifA-rifE genes, is terminated by the product of the rifF gene, an amide synthase that releases the completed undecaketide as its macrocyclic lactam. The sequence of the RifF protein from Amycolatopsis mediterranei shows 26% identity and 40% homology with the members of the arylamine N-acetyltransferase (NAT) family of proteins. Based on the homology of the primary structures and the similarity of the reactions catalyzed by the two enzymes, we have compared the RifF protein with members of the NAT family. We have modeled the three-dimensional (3D) structure of RifF using NAT from Salmonella typhimurium and Mycobacterium smegmatis as a template. Proteolytic digestions of RifF revealed accessible regions in the protein which are in agreement with the modeled structure. We have expressed the whole protein and individual domains of the protein based on comparison with NAT from S. typhimurium and have purified the proteins by affinity chromatography using a hexahistidine tag. RifF has been further purified using ion-exchange (Mono Q) chromatography. An antiserum has been generated using the C-terminal nona- and tridecapeptides of RifF and has been shown to recognize RifF uniquely. It does not cross-react with any other member of the NAT family.  相似文献   
59.
The protease domain of the Hepatitis C Virus (HCV) nonstructural protein 3 (NS3) has been targeted for inhibition by several direct-acting antiviral drugs. This approach has had marked success to treat infections caused by HCV genotype 1 predominant in the USA, Europe, and Japan. However, genotypes 3 and 4, dominant in developing countries, are resistant to a number of these drugs and little progress has been made towards understanding the structural basis of their drug resistivity. We have previously developed a 4D computational methodology, based on 3D structure modeling and molecular dynamics simulation, to analyze the active sites of the NS3 proteases of HCV-1b and 4a in relation to their catalytic activity and drug susceptibility. Here, we improved the methodology, extended the analysis to include genotype 3a (predominant in South Asia including Pakistan), and compared the results of the three genotypes (1b, 3a and 4a). The 4D analyses of the interactions between the catalytic triad residues (His57, Asp81, and Ser139) indicate conformational instability of the catalytic site in HCV-3a and 4a compared to that of HCV-1b NS3 protease. The divergence is gradual and genotype-dependent, with HCV-1b being the most stable, HCV-4a being the most unstable and HCV-3a representing an intermediate state. These results suggest that the structural dynamics behavior, more than the rigid structure, could be related to the altered catalytic activity and drug susceptibility seen in NS3 proteases of HCV-3a and 4a.  相似文献   
60.
MicroRNAs (miRNAs) are small non-coding RNAs that play important roles in many biological processes such as development, cell signaling and immune response. Small RNA deep sequencing technology provided an opportunity for a thorough survey of the miRNA profile of a mosquito cell line from Aedes aegypti. We characterized the miRNA composition of the nucleus and the cytoplasm of uninfected cells and compared it with the one of cells infected with the endosymbiotic bacterium Wolbachia strain wMelPop-CLA. We found an overall increase of small RNAs between 18 and 28 nucleotides in both cellular compartments in Wolbachia-infected cells and identified specific miRNAs induced and/or suppressed by the Wolbachia infection. We discuss the mechanisms that the cell may use to shuttle miRNAs between the cytoplasm and the nucleus. In addition, we identified piRNAs that changed their abundance in response to Wolbachia infection. The miRNAs and piRNAs identified in this study provide promising leads for investigations into the host-endosymbiont interactions and for better understanding of how Wolbachia manipulates the host miRNA machinery in order to facilitate its persistent replication in infected cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号