首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   5篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   6篇
  2020年   5篇
  2019年   4篇
  2018年   8篇
  2017年   6篇
  2016年   9篇
  2015年   6篇
  2014年   8篇
  2013年   13篇
  2012年   12篇
  2011年   20篇
  2010年   8篇
  2009年   10篇
  2008年   16篇
  2007年   13篇
  2006年   10篇
  2005年   7篇
  2004年   6篇
  2003年   8篇
  2002年   7篇
  2001年   6篇
  2000年   6篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1996年   6篇
  1995年   2篇
  1994年   1篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1982年   1篇
  1976年   1篇
  1971年   1篇
排序方式: 共有234条查询结果,搜索用时 31 毫秒
61.
Endothelial cell (EC) movement is an initiating and rate-limiting event in the neogenesis and repair of blood vessels. Here, we explore the hypothesis that microviscosity of the plasma membrane (PM) is a key physiological regulator of cell movement. Aortic ECs treated with membrane-active agents, such as alpha-tocopherol, cholesterol and lysophospholipids, exhibited a biphasic dependency on membrane microviscosity, in which moderate increases enhanced EC migration, but increases beyond a threshold markedly inhibited migration. Surprisingly, angiogenic growth factors, that is, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), also increased membrane microviscosity, as measured in live cells by fluorescence recovery after photobleaching (FRAP). The localization of Rac to the PM was modified in cells treated with membrane-active agents or growth factors, suggesting a molecular mechanism for how membrane microviscosity influences cell movement. Our data show that angiogenic growth factors, as well as certain lipophilic molecules, regulate cell motility through alterations in membrane properties and the consequent relocalization of critical signalling molecules to membranes.  相似文献   
62.
A series of novel 2-substituted-5,7-dichloro-1,2,3,4-tetrahydroisoquinoline-6-carbohydrazide were designed, synthesized and structures were confirmed by analytical methods, viz., 1H-NMR, 13C-NMR and Mass spectrometry. Synthesized derivatives were evaluated for their anti-mycobacterial activity against Mycobacterium tuberculosis (Mtb) H37Ra. Among all the evaluated compounds, 10A25 containing biphenyl moiety exhibited significant inhibition with IC50 4.7 μM. 10A19 , with an electron-withdrawing Iodo group in the ortho position of the phenyl exhibited significant anti-tubercular activity with IC50 8.8 μM. IC50 values of the remaining compounds ranged from 9.2 to 73.6 μM. Molecular docking study of the significantly active compound 10A25 was performed to determine the putative binding position of the test ligand at the active site of the selected target proteins Mycobacterium tuberculosis enoyl reductase (InhA) PDB – 4TZK and peptide deformylase PDB – 3E3U. A suitable single crystal for one of the active compounds, 10A12 , was generated and analysed to further confirm the structure of the compounds.  相似文献   
63.
Oxygen transfer from bleomycin-metal complexes   总被引:2,自引:0,他引:2  
Both Fe(III) and Cu(II) complexes of bleomycin (BLM), but not N-acetyl BLM . Fe(III), mediated the transfer of oxygen from iodosobenzene to organic substrates. In analogy with results obtained using certain cytochrome P-450 analogs, cis-stilbene was converted cleanly to the respective oxide, while no more than traces of trans-stilbene oxide were formed from trans-stilbene under identical conditions. The possible relevance of these observations to the degradation of DNA by bleomycin was also studied. In both the presence and absence of O2, BLM . Cu(II) . C6H5IO effected DNA degradation, as judged by the release of [3H]thymine from radiolabeled Escherichia coli DNA. These findings provide a valuable new assay system for the study of bleomycin analogs and suggest the possibility that bleomycin may function as an "oxygen transferase" in its degradation of DNA in situ.  相似文献   
64.
We have studied the effect of several structurally related mansonones on the cytotoxicity of plant and bacterial toxins in Vero and BER-40, a brefeldin A-resistant mutant of Vero cells. Mansonone-D (MD), a sesquiterpenoid ortho-naphthoquinone, inhibited the cytotoxicity of ricin, modeccin, Pseudomonas toxin, and diphtheria toxin in Vero cells to different extents. The inhibition of ricin cytotoxicity was dose dependent and reversed upon removal of the drug. Protection of ricin cytotoxicity was also observed in the presence of cycloheximide, indicating that de novo protein synthesis is not required for the protective effect. Although MD inhibited the degradation and excretion of ricin, the binding and internalization of ricin was not affected. In contrast, MD strongly reduced the specific binding of diphtheria toxin in Vero cells. Fluorescence microscopic studies show that MD treatment dramatically alters the morphology of the Golgi apparatus in Vero cells. The kinetic studies reveal that the protection of ricin cytotoxicity is the consequence of decreased toxin translocation to the cytosol in MD-treated cells. The reactive ortho-quinone moiety of MD is important for the protective effect as thespesone, a para-naphthoquinone with a heterocyclic ring structure identical to that of MD, did not inhibit the cytotoxicity of toxins. Thespone, a dehydromansonone-D, lacking two hydrogens from the heterocyclic dihydrofuran ring of MD, inhibited the cytotoxicity of ricin, but was albeit less potent than MD. Neither mansonone-E nor mansonone-H with reactive ortho-quinone moiety, but with a different heterocyclic structure, had any effect on the cytotoxicity of ricin indicating that the protective effect of MD is specifically related to the overall structure of the metabolite. J. Cell. Physiol. 176:40–49, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article was prepared by a group of United States government employees and non-United States government employees, and as such is subject to 17 U.S.C. Sec. 105.
  •   相似文献   
    65.
    Zhang Y  Dewitt DL  Murugesan S  Nair MG 《Life sciences》2005,77(25):3222-3230
    A bioassay guided phytochemical study of the ethyl acetate extract of the seeds of Picrorhiza kurroa afforded a new triterpenoid, 2alpha, 3beta, 19beta, 23-tetrahydroxyolean-12-en-28-O-beta-D-glucoside (1), along with five known triterpenoids, 2alpha, 3beta, 19beta, 23-tetrahydroxyolean-12-en-28-oic acid (2), 2alpha, 3beta, 23-trihydroxyolean-12-en-28-O-beta-d-glucoside (3), 2alpha, 3beta, 23-trihydroxyolean-12-en-28-oic acid (4), 2alpha, 3beta, 19beta, trihydroxyolean-12-en-28-oic acid (5), and 2alpha, 3beta, 6beta, 23-tetrahydroxyolean-12-en-28-oic acid (6). Their structures were established by extensive NMR spectral studies. The acetyl derivatives, compounds 7 and 8, were prepared from compounds 1 and 2, respectively, to aid in their structure elucidation. The inhibition of cyclooxygenase-2 (COX-2) enzyme by compounds 1--6 at 100 microg/mL was 38.3%, 39%, 37%, 49.6%, 25%, and 45.0%, respectively. However, compounds 1--6, at 100 microg/mL, did not inhibit cyclooxygenase-1 (COX-1) enzyme. Compound 1 is a novel triterpenoid and compounds 1--6 are isolated for the first time from the seeds of P. kurroa.  相似文献   
    66.
    9-Nitrocamptothecin (9-NC) is an orally administered camptothecin (CPT) that is under evaluation in clinical trials. This compound is not fluorescent, which has hampered development of a sensitive high-performance liquid chromatographic (LC) assay for measurement of drug concentrations in clinical trials. We now report development of an assay that involves reduction of 9-NC to the fluorescent compound 9-aminocamptothecin (9-AC). The method is based on enzymatic reduction of 9-NC using bovine liver S-9 fraction. This method is validated to quantitate 9-NC and 9-AC in patient samples, and yields results comparable to those obtained with an LC/MS method.  相似文献   
    67.
    From the AcOEt extract of the seeds of Picrorhiza kurroa were isolated picrorhiza acid (1), picrorhizoside A (2), picrorhizoside B (3), picrorhizoside C (4), (-)-shikimic acid (5), gallic acid (6), ellagic acid (7), isocorilagin (8), 1-O-galloyl-beta-D-glucose (9), 1-O,3-O,6-O-trigalloyl-beta-D-glucose (10), and 1-O,2-O,3-O,4-O,6-O-pentagalloyl-beta-D-glucose (11), and their structures were established by extensive NMR and chemical studies. Constituents 1-4 are novel compounds, and the known compounds 5-11 have been isolated for the first time from the seeds of P. kurroa. Compounds 2 and 3 were hydrolyzed and yielded 12, isochebulic acid. Compounds 1-12 showed 89.6, 77.3, 56.1, 50.5, 11.0, 86.4, 50.5, 29.2, 70.9, 50.5, 56.5, and 86.1% inhibition of lipid peroxidation at 5 microg/ml, respectively. The commercial antioxidants BHA (1.8 microg/ml), BHT (2.2 microg/ml), and TBHQ (1.66 microg/ml) inhibited lipid peroxidation at 85.6, 87.1, and 81.1%, respectively. The inhibition of cyclooxygenase-1 (COX-1) by 2-5, 7, 8, and 10-12 at 100 microg/ml was 41.9, 28.4, 32.9, 9.3, 70.7, 34.7, 16.0, 89.6, and 53.4%, respectively. Similarly, compounds 1-8 and 11 and 12, at 100 microg/ml, inhibited COX-2 by 12.6, 15.3, 25.1, 5.3, 13.2, 21.7, 2.0, 42.4, 43.4, and 36.9%, respectively.  相似文献   
    68.

    Background

    Palmitoylation is a 16-carbon lipid post-translational modification that increases protein hydrophobicity. This form of protein fatty acylation is emerging as a critical regulatory modification for multiple aspects of cellular interactions and signaling. Despite recent advances in the development of chemical tools for the rapid identification and visualization of palmitoylated proteins, the palmitoyl proteome has not been fully defined. Here we sought to identify and compare the palmitoylated proteins in murine fibroblasts and dendritic cells.

    Results

    A total of 563 putative palmitoylation substrates were identified, more than 200 of which have not been previously suggested to be palmitoylated in past proteomic studies. Here we validate the palmitoylation of several new proteins including Toll-like receptors (TLRs) 2, 5 and 10, CD80, CD86, and NEDD4. Palmitoylation of TLR2, which was uniquely identified in dendritic cells, was mapped to a transmembrane domain-proximal cysteine. Inhibition of TLR2 S-palmitoylation pharmacologically or by cysteine mutagenesis led to decreased cell surface expression and a decreased inflammatory response to microbial ligands.

    Conclusions

    This work identifies many fatty acylated proteins involved in fundamental cellular processes as well as cell type-specific functions, highlighting the value of examining the palmitoyl proteomes of multiple cell types. S-palmitoylation of TLR2 is a previously unknown immunoregulatory mechanism that represents an entirely novel avenue for modulation of TLR2 inflammatory activity.
      相似文献   
    69.
    Free radical production and lipid peroxidation are potentially important mediators in testicular physiology and toxicology. Polychlorinated biphenyls (PCBs) are global environmental contaminants that cause disruption of the endocrine system in human and animals. The present study was conducted to elucidate the protective role of vitamin C and E against Aroclor 1254-induced changes in Leydig cell steroidogenesis and antioxidant system. Adult male rats were dosed for 30 days with daily intraperitoneal (ip) injection of 2 mg/kg Aroclor or vehicle (corn oil). One group of rats was treated with vitamin C (100 mg/kg bw/day) while the other group was treated with vitamin E (50 mg/kg bw/day) orally, simultaneously with Aroclor 1254 for 30 days. One day after the last treatment, animals were euthanized and blood was collected for the assay of serum hormones such as luteinizing hormone (LH), thyroid stimulating hormone (TSH), prolactin (PRL), triiodothyronine (T3), thyroxine (T4), testosterone and estradiol. Testes were quickly removed and Leydig cells were isolated in aseptic condition. Purity of Leydig cells was determined by 3β-hydroxysteroid dehydrogenase (3β-HSD) staining method. Purified Leydig cells were used for quantification of cell surface LH receptors and steroidogenic enzymes such as cytochrome P450 side chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-hydroxysteroid dehydrogenase (17β- HSD). Leydig cellular enzymatic antioxidants superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), γ-glutamyl transpeptidase (γ-GT), glutathione-S-transferase (GST) and non-enzymatic antioxidants such as vitamin C and E were assayed. Lipid peroxidation (LPO) and reactive oxygen species (ROS) were also estimated in Leydig cells. Aroclor 1254 treatment significantly reduced the serum LH, TSH, PRL, T3, T4, testosterone and estradiol. In addition to this, Leydig cell surface LH receptors, activities of the steroidogenic enzymes such as cytochrome P450scc, 3β-HSD, 17β-HSD, antioxidant enzymes SOD, CAT, GPX, GR, γ-GT, GST and non-enzymatic antioxidants such as vitamin C and E were significantly diminished whereas, LPO and ROS were markedly elevated. However, the simultaneous administration of vitamin C and E in Aroclor 1254 exposed rats resulted a significant restoration of all the above-mentioned parameters to the control level. These observations suggest that vitamin C and E have ameliorative role against adverse effects of PCB on Leydig cell steroidogenesis.  相似文献   
    70.
    International Journal of Peptide Research and Therapeutics - The teleost fish skin mucus acts as an important physical and biological barrier that prevents fish from the surrounding environment....  相似文献   
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号