首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93237篇
  免费   274篇
  国内免费   884篇
  94395篇
  2022年   8篇
  2021年   7篇
  2020年   15篇
  2019年   8篇
  2018年   11844篇
  2017年   10675篇
  2016年   7457篇
  2015年   590篇
  2014年   282篇
  2013年   299篇
  2012年   4208篇
  2011年   12817篇
  2010年   12003篇
  2009年   8223篇
  2008年   9789篇
  2007年   11367篇
  2006年   254篇
  2005年   503篇
  2004年   960篇
  2003年   1024篇
  2002年   783篇
  2001年   261篇
  2000年   166篇
  1999年   30篇
  1998年   10篇
  1997年   23篇
  1996年   12篇
  1995年   2篇
  1994年   7篇
  1993年   29篇
  1992年   20篇
  1991年   38篇
  1990年   7篇
  1989年   9篇
  1988年   18篇
  1987年   14篇
  1986年   2篇
  1985年   3篇
  1984年   7篇
  1983年   17篇
  1982年   3篇
  1975年   5篇
  1972年   247篇
  1971年   275篇
  1970年   5篇
  1965年   13篇
  1962年   24篇
  1956年   5篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The condition and feeding behaviour of burbot, a widespread potamodromous species in riverine and lacustrine environments, were compared in order to evaluate the importance of both in three artificial systems. Subadult burbot were sampled in three temperate reservoirs in spring, and one of them also in summer and autumn. Standardised abundance and sizes of burbot were comparable between the reservoirs, but the conditions were significantly different. The Clark’s condition coefficient and index of fullness were independent of burbot size and individuals. Feeding behaviour in terms of abundance and composition of consumed food was environment-dependent. The most common prey category was aquatic insect larvae, dominating in the riverine environment. Permanent water invertebrates, microcrustaceans, beetles and crayfish were less common food and eaten more often in the lacustrine environment. Prey-fish were usually the most common species of suitable size. The food analyses demonstrated opportunistic feeding behaviour with selection of prey associated with benthic habitat and suitable size. Burbot is therefore flexible not only in environments utilisation, but also feeding strategy.  相似文献   
992.
Drought is one of the key restraints to agricultural productivity worldwide and is expected to increase further. Drought stress accompanied by reduction in precipitation pose major challenges to future food safety. Strategies should be develop to enhance drought tolerance in crops like chickpea and wheat, in order to enhance their growth and yield. Drought tolerance strategies are costly and time consuming however, recent studies specify that plant growth promoting rhizobacteria (PGPR) and plant growth regulators (PGRs) can help plants to withstand under harsh environmental condition and enable plants to cope with drought stress. PGPR can act as biofertilizer and bioenhancer for different legumes and non-legumes. The use of PGPR and symbiotic microorganisms, may be valuable in developing strategies to assist water conservation in plants. The use of PGPR has been confirmed to be an ecologically sound way of enhancing crop yields by facilitating plant growth through direct or indirect mechanism. The mechanisms of PGPR for water conservation include secretion of exopolysaccharides, biofilm formation, alternation in phytohormone content, improvement in sugar concentration, enhancing availability of micro- and macronutrients and changes in plant functional traits. Similarly, plant growth regulators (PGRs) are specially noticed in actively growing tissues under stress conditions and have been associated in the control of cell division, embryogenesis, root formation, fruit development and ripening, and reactions to biotic and abiotic stresses and upholding water conservation status in plants. Previous studies also suggest that plant metabolites interact with plant physiology under stress condition and impart drought tolerance. Metabolites like, sugars, amino acids, organic acid and polyols play a key role in drought tolerance of crop plants grown under stress condition. It is concluded from the present study that PGRs in combination with PGPR consortium can be an effective formulation to promote plant growth and maintenance of plant turgidity under drought stress. This review is a compilation of the effect of drought stress on crop plants and described interactions between PGPR/PGRs and plant development, knowledge of water conservation and stress release strategies of PGPR and PGRs and the role of plant metabolites in drought tolerance of crop plants. This review also bridges the gaps that summarizes the mechanism of action of PGPR for drought tolerance of crop plants and sustainability of agriculture and applicability of these beneficial rhizobacteria in different agro-ecosystems under drought stress.  相似文献   
993.
Litter decomposition is a major driver of carbon (C) and nitrogen (N) cycles in forest ecosystems and has major implications for C sequestration and nutrient availability. However, empirical information regarding long-term decomposition rates of foliage and wood remains rare. In this study, we assessed long-term C and N dynamics (12–13 years) during decomposition of foliage and wood for three boreal tree species, under a range of harvesting intensities and slash treatments. We used model selection based on the second-order Akaike’s Information Criterion to determine which decomposition model had the most support. The double-exponential model provided a good fit to C mass loss for foliage of trembling aspen, white spruce, and balsam fir, as well as aspen wood. These litters underwent a rapid initial phase of leaching and mineralisation, followed by a slow decomposition. In contrast, for spruce and fir wood, the single-exponential model had the most support. The long-term average decay rate of wood was faster than that of foliage for aspen, but not of conifers. However, we found no evidence that fir and spruce wood decomposed at slower rates than the recalcitrant fraction of their foliage. The critical C:N ratios, at which net N mineralisation began, were higher for wood than for foliage. Long-term decay rates following clear-cutting were either similar or faster than those observed in control stands, depending on litter material, tree species, and slash treatment. The critical C:N ratios were reached later and decreased for all conifer litters following stem-only clear-cutting, indicating increased N retention in harvested sites with high slash loads. Partial harvesting had weak effects on C and N dynamics of decaying litters. A comprehensive understanding of the long-term patterns and controls of C and N dynamics following forest disturbance would improve our ability to forecast the implications of forest harvesting for C sequestration and nutrient availability.  相似文献   
994.
In this work, we re-evaluated long-standing conjectures as to the source of the exceptionally large compliance of the bladder wall. Whereas these conjectures were based on indirect measures of loading mechanisms, in this work we take advantage of advances in bioimaging to directly assess collagen fibers and wall architecture during biaxial loading. A custom biaxial mechanical testing system compatible with multiphoton microscopy was used to directly measure the layer-dependent collagen fiber recruitment in bladder tissue from 9 male Fischer rats (4 adult and 5 aged). As for other soft tissues, the bladder loading curve was exponential in shape and could be divided into toe, transition and high stress regimes. The relationship between collagen recruitment and loading curves was evaluated in the context of the inner (lamina propria) and outer (detrusor smooth muscle) layers. The large extensibility of the bladder was found to be possible due to folds in the wall (rugae) that provide a mechanism for low resistance flattening without any discernible recruitment of collagen fibers throughout the toe regime. For more extensible bladders, as the loading extended into the transition regime, a gradual coordinated recruitment of collagen fibers between the lamina propria layer and detrusor smooth muscle layer was found. A second important finding was that wall extensibility could be lost by premature recruitment of collagen in the outer wall that cut short the toe region. This change was correlated with age. This work provides, for the first time, a mechanistic understanding of the role of collagen recruitment in determining bladder extensibility and capacitance.  相似文献   
995.
Due to a long-term transgression since the Early Cambrian, an extensive shallow-water carbonate platform was developed in the entire Tarim Basin (NW China). During the deposition of the Yingshan Formation (Early-Middle Ordovician), a carbonate ramp system was formed in the intrashelf basin in the Bachu-Keping area of the western basin. Four well-exposed outcrop sections were selected to investigate their depositional facies, cycles, and sequences, as well as the depositional evolution. Detailed facies analyses permit the recognition of three depositional facies associations, including peritidal, semi-restricted subtidal, and open-marine subtidal facies, and eleven types of lithofacies. These are vertically arranged into meter-scale, shallowing-upward peritidal, semi-restricted subtidal, and open-marine subtidal cycles, in the span of Milankovitch frequency bands, suggesting a dominant control of Earth’s orbital forcing on the cyclic sedimentation on the platform. On the basis of vertical facies (or lithofacies) and cycle stacking patterns, as well as accommodation changes illustrated graphically by Fischer plots at all studied sections, six third-order depositional sequences are recognized and consist of lower transgressive and upper regressive parts. In shallow depositional settings, the transgressive packages are dominated by thicker-than-average, shallow subtidal cycles, whereas the regressive parts are mainly represented by thinner-than-average, relatively shallow subtidal to peritidal cycles. In relatively deep environments, however, the transgressive and regressive successions display the opposite trends of cycle stacking patterns, i.e., thinner-than-average subtidal cycles of transgressive packages. Sequence boundaries are mainly characterized by laterally traceable, transitional zones without apparent subaerial exposure features. Good correlation of the long-term changes in accommodation space inferred from vertical facies and cycle stacking patterns with sea-level fluctuations elsewhere around the world suggests an overriding eustatic control on cycle origination, platform building-up and evolution during the Early-Middle Ordovician, although with localized influences of syndepositional faulting and depositional settings.  相似文献   
996.
The effect of algae on the production of musty-smelling compounds by actinomycetes was studied. Streptomyces spp., causing intensive musty odor, were isolated from hypertrophic Lake Kasumigaura and cultured in association with algae from the same lake. Isolate E and I effectively utilized the cyanobacteria, Microcystis aeruginosa and Anabaena spiroides, and the diatom, Synedra acus, as a carbon source and produced a musty-smelling 2-methylisoborneol in the shaken sediment cultures. High populations of algae and actinomycetes, and aerobic condition in the sediment seem responsible for the occurrence of musty odor in Lake Kasumigaura.  相似文献   
997.
The physical-chemical and carbohydrate binding specificity ofGriffonia simplicifolia I (GS I) isolectins, one of the 4 lectins isolated fromGriffonia simplicifolia seeds, are described.Association constants for the binding of methyl α- and β-D-galactopyranoside and methyl 2-acetamido-2-deoxy-α-D-galactopyranoside to the A4, A2 B2 and B4 isolectins are reported.Precipitation reactions of theGriffonia simplicifolia isolectins with guaran and type B blood group substance are described.The hypothesis that subunit B is a precursor of subunit A, a process involving proteolytic cleavage of the B subunit, was tested by conducting structural studies on the 2 subunits. The results indicated that the A and B subunits are probably products of 2 separate but closely related, possibly contiguous genes.  相似文献   
998.

Background

Leishmaniasis and malaria are the two most common parasitic diseases and responsible for large number of deaths per year particularly in developing countries like Pakistan. Majority of Pakistan population rely on medicinal plants due to their low socio-economic status. The present review was designed to gather utmost fragmented published data on traditionally used medicinal plants against leishmaniasis and malaria in Pakistan and their scientific validation.

Methods

Pub Med, Google Scholar, Web of Science, ISI Web of knowledge and Flora of Pakistan were searched for the collection of data on ethnomedicinal plants. Total 89 articles were reviewed for present study which was mostly published in English. We selected only those articles in which complete information was given regarding traditional uses of medicinal plants in Pakistan.

Results

Total of 56 plants (malaria 33, leishmaniasis 23) was found to be used traditionally against reported parasites. Leaves were the most focused plant part both in traditional use and in in vitro screening against both parasites. Most extensively used plant families against Leishmaniasis and Malaria were Lamiaceae and Asteraceae respectively. Out of 56 documented plants only 15 plants (Plasmodia 4, Leishmania 11) were assessed in vitro against these parasites. Mostly crude and ethanolic plant extracts were checked against Leishmania and Plasmodia respectively and showed good inhibition zone. Four pure compounds like artemisinin, physalins and sitosterol extracted from different plants proved their efficacy against these parasites.

Conclusions

Present review provides the efficacy and reliability of ethnomedicinal practices and also invites the attention of chemists, pharmacologist and pharmacist to scientifically validate unexplored plants that could lead toward the development of novel anti-malarial and anti-leishmanial drugs.
  相似文献   
999.

Key message

A strong, stable and root-specific expression system was developed from a rice root-specific GLYCINE - RICH PROTEIN 7 promoter for use as an enabling technology for genetic manipulation of wheat root traits.

Abstract

Root systems play an important role in wheat productivity. Genetic manipulation of wheat root traits often requires a root-specific or root-predominant expression system as an essential enabling technology. In this study, we investigated promoters from rice root-specific or root-predominant expressed genes for development of a root expression system in bread wheat. Transient expression analysis using a GREEN FLUORESCENT PROTEIN (GFP) reporter gene driven by rice promoters identified six promoters that were strongly expressed in wheat roots. Extensive organ specificity analysis of three rice promoters in transgenic wheat revealed that the promoter of rice GLYCINE-RICH PROTEIN 7 (OsGRP7) gene conferred a root-specific expression pattern in wheat. Strong GFP fluorescence in the seminal and branch roots of wheat expressing GFP reporter driven by the OsGRP7 promoter was detected in epidermal, cortical and endodermal cells in mature parts of the root. The GFP reporter driven by the promoter of rice METALLOTHIONEIN-LIKE PROTEIN 1 (OsMTL1) gene was mainly expressed in the roots with essentially no expression in the leaf, stem or seed. However, it was also expressed in floral organs including glume, lemma, palea and awn. In contrast, strong expression of rice RCg2 promoter-driven GFP was found in many tissues. The GFP expression driven by these three rice promoters was stable in transgenic wheat plants through three generations (T1–T3) examined. These data suggest that the OsGRP7 promoter can provide a strong, stable and root-specific expression system for use as an enabling technology for genetic manipulation of wheat root traits.
  相似文献   
1000.

Key message

Arabidopsis CK2 α4 subunit regulates the primary root and hypocotyl elongation, lateral root formation, cotyledon expansion, rosette leaf initiation and growth, flowering, and anthocyanin biosynthesis.

Abstract

Casein kinase 2 (CK2) is a conserved tetrameric kinase composed of two α and two β subunits. The inhibition of CK2 activity usually results in severe developmental deficiency. Four genes (CKA1CKA4) encode CK2 α subunit in Arabidopsis. Single mutations of CKA1, CKA2, and CKA3 do not affect the normal growth of Arabidopsis, while the cka1 cka2 cka3 triple mutants are defective in cotyledon and hypocotyl growth, lateral root development, and flowering. The inhibition of CKA4 expression in cka1 cka2 cka3 background further reduces the number of lateral roots and delays the flowering time. Here, we report the characterization of a novel knockout mutant of CKA4, which exhibits various developmental defects including reduced primary root and hypocotyl elongation, increased lateral root density, delayed cotyledon expansion, retarded rosette leaf initiation and growth, and late flowering. The examination of the cellular basis for abnormal root development of this mutant revealed reduced root meristem cells with enhanced RETINOBLASTOMA-RELATED (RBR) expression that promotes cell differentiation in root meristem. Moreover, this cka4-2 mutant accumulates higher anthocyanin in the aerial part and shows an increased expression of anthocyanin biosynthetic genes, suggesting a novel role of CK2 in modulating anthocyanin biosynthesis. In addition, the complementation test using primary root elongation assay as a sample confirms that the changed phenotypes of this cka4-2 mutant are due to the lack of CKA4. Taken together, this study reveals an essential role of CK2 α4 subunit in multiple developmental processes in Arabidopsis.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号