全文获取类型
收费全文 | 1323篇 |
免费 | 81篇 |
国内免费 | 3篇 |
专业分类
1407篇 |
出版年
2023年 | 8篇 |
2022年 | 14篇 |
2021年 | 9篇 |
2018年 | 18篇 |
2017年 | 8篇 |
2016年 | 25篇 |
2015年 | 28篇 |
2014年 | 30篇 |
2013年 | 47篇 |
2012年 | 59篇 |
2011年 | 56篇 |
2010年 | 41篇 |
2009年 | 41篇 |
2008年 | 63篇 |
2007年 | 67篇 |
2006年 | 65篇 |
2005年 | 58篇 |
2004年 | 47篇 |
2003年 | 51篇 |
2002年 | 41篇 |
2001年 | 46篇 |
2000年 | 38篇 |
1999年 | 33篇 |
1998年 | 20篇 |
1997年 | 7篇 |
1996年 | 13篇 |
1995年 | 11篇 |
1994年 | 19篇 |
1993年 | 10篇 |
1992年 | 23篇 |
1991年 | 20篇 |
1990年 | 15篇 |
1989年 | 28篇 |
1988年 | 29篇 |
1987年 | 17篇 |
1986年 | 37篇 |
1985年 | 25篇 |
1984年 | 24篇 |
1983年 | 20篇 |
1982年 | 11篇 |
1981年 | 8篇 |
1980年 | 10篇 |
1979年 | 26篇 |
1978年 | 19篇 |
1977年 | 10篇 |
1976年 | 12篇 |
1975年 | 22篇 |
1974年 | 15篇 |
1973年 | 12篇 |
1972年 | 7篇 |
排序方式: 共有1407条查询结果,搜索用时 15 毫秒
81.
A non-kallikrein arginine esterase (esterase I) has been purified from dog urine and characterized. The enzyme was purified by a three-step procedure, including ion exchange chromatography on DEAE-Sephacel, affinity chromatography on p-aminobenzamidine-Sepharose, and final gel filtration on Ultrogel AcA-54. The purified preparation gave three protein bands on polyacrylamide gel electrophoresis, all of which had esterolytic activity. The enzyme has a specific activity of 601 esterase units/mg protein. It has negligible kininogenase activity. Esterase I gave two closely migrating protein bands on reduced sodium dodecyl sulfate-polyacrylamide gel electrophoresis with molecular weights of 34,000 and 33,300. Esterase I is a glycoprotein with a pH optimum of 9.5 and a pI of 4.62. The enzyme is strongly inhibited by a host of inhibitors including aprotinin, leupeptin, antipain, soybean trypsin inhibitor, lima bean trypsin inhibitor, and DPhe-Phe-Arg-chloromethyl ketone (I50 in the 10(-9)-10(-8) M range). However, p-aminobenzamidine, N alpha-p-tosyl-lysyl chloromethyl ketone and phenylmethylsulfonyl fluoride were weak inhibitors, with I50 values in the 10(-5)-10(-7) M range. The enzyme preferentially hydrolyzes Pro-Arg bonds. Among fluorogenic substrates used in this study, butyloxycarbonyl-Val-Pro-Arg-methylcoumarinamide (alpha-thrombin substrate) was found to be the best, with a Km of 1.7 microM and a kcat/Km of 6.3 s.microM-1. However, esterase I does not convert fibrinogen to fibrin nor activate plasminogen to plasmin. Esterase I is immunologically distinct from dog urinary kallikrein, having no cross-reactivity with antibodies against dog kallikrein. 相似文献
82.
Role of fungi in freshwater ecosystems 总被引:7,自引:0,他引:7
Michelle K.M. Wong Teik-Khiang Goh I. John Hodgkiss Kevin D. Hyde V. Mala Ranghoo Clement K.M. Tsui Wai-Hong Ho Wilson S.W. Wong Tsz-Kit Yuen 《Biodiversity and Conservation》1998,7(9):1187-1206
There are more than 600 species of freshwater fungi with a greater number known from temperate, as compared to tropical, regions. Three main groups can be considered which include Ingoldian fungi, aquatic ascomycetes and non-Ingoldian hyphomycetes, chytrids and, oomycetes. The fungi occurring in lentic habitats mostly differ from those occurring in lotic habitats. Although there is no comprehensive work dealing with the biogeography of all groups of freshwater fungi, their distribution probably follows that of Ingoldian fungi, which are either cosmopolitan, restricted to pantemperate or pantropical regions, or in a few cases, have a restricted distribution. Freshwater fungi are thought to have evolved from terrestrial ancestors. Many species are clearly adapted to life in freshwater as their propagules have specialised aquatic dispersal abilities. Freshwater fungi are involved in the decay of wood and leafy material and also cause diseases of plants and animals. These areas are briefly reviewed. Gaps in our knowledge of freshwater fungi are discussed and areas in need of research are suggested. 相似文献
83.
Allan S. Hoffman Patrick S. Stayton Oliver Press Niren Murthy Chantal A. Lackey Charles Cheung Fiona Black Jean Campbell Nelson Fausto Themis R. Kyriakides Paul Bornstein 《Biotechnology and Bioprocess Engineering》2001,6(4):205-212
One of the important characteristics of biological systems is their ability to change important properties in response to
small environmental signals. The molecular mechanisms that biological molecules utilize to sense and respond provide interesting
models for the development of “smart” polymeric biomaterials with biomimetic properties. An important example of this is the
protein coat of viruses, which contains peptide units that facilitate the trafficking of the virus into the cell via endocytosis,
then out of the endosome into the cytoplasm, and from there into the nucleus. We have designed a family of synthetic polymers
whose compositions have been designed to mimic specific peptides on viral coats that facilitate endosomal escape. Our biomimetic
polymers are responsive to the lowered pH within endosomes, leading to disruption of the endosomal membrane and release of
important biomolecular drugs such as DNA, RNA, peptides and proteins to the cytoplasm before they are trafficked to lysosomes
and degraded by lysosomal enzymes. In this article, we review our work on the design, synthesis and action of such smart,
pH-sensitive polymers. 相似文献
84.
Binding modes of a series of aryloxymethylphosphonates and monoanionic biosteres of phosphate group from a series of benzylic alpha,alpha-diflluoro phosphate and its biosteres as protein tyrosine phosphatase 1B (PTP 1B) inhibitors have been identified by molecular modeling techniques. We have performed docking and molecular dynamics simulations of these inhibitors with PTP 1B enzyme. The initial conformation of the inhibitors for docking was obtained from simulated annealing technique. Solvent accessible surface area calculations suggested that active site of PTP 1B is highly hydrophobic. The results indicate that for aryloxymethylphosphonates, in addition to hydrogen bonding interactions, Tyr46, Arg47, Asp48, Val49, Glu115, Lys116, Lys120 amino acid residues of PTP 1B are responsible for governing inhibitor potency of the compounds. The sulfonate and tetrazole functional groups have been identified as effective monoanionic biosteres of phosphate group and biphenyl ring system due to its favorable interactions with Glu115, Lys116, Lys120 residues of PTP 1B found to be more suitable aromatic functionality than naphthalene ring system for benzylic alpha,alpha-diflluoro phosphate and its biosteres. The information generated from the present study should be useful in the design of more potent PTP 1B inhibitors as anti diabetic agents. 相似文献
85.
Murthy M Hamilton J Greiner RS Moriguchi T Salem N Kim HY 《Journal of lipid research》2002,43(4):611-617
In this study, we have examined the effects of n-3 fatty acid deficient diets on the phospholipids (PL) molecular species composition in the hippocampus. Female rats were raised for two generations on diets containing linoleic acid (18:2n-6), with or without supplementation of alpha-linolenic acid (18:3n-3) or 18:3n-3 plus docosahexaenoic acid (22:6n-3). At 84 days of age, the hippocampal phospholipids were analyzed by reversed phase HPLC-electrospray ionization mass spectrometry. Depleting n-3 fatty acids from the diet led to a reduction of 22:6n-3 molecular species in phosphatidylcholine (PC), phosphatidylethanolamine (PE), PE-plasmalogens (PLE), and phosphatidylserine (PS) by 70-80%. In general, 22:6n-3 was replaced with 22:5n-6 but the replacement at the molecular species level did not always occur in a reciprocal manner, especially in PC and PLE. In PC, the 16:0,22:6n-3 species was replaced by 16:0,22:5n-6 and 18:0,22:5n-6. In PLE, substantial increases of both 22:5n-6 and 22:4n-6 species compensated for the decreases in 22:6n-3 species in n-3 fatty acid deficient groups. While the total PL content was not affected by n-3 deficiency, the relative distribution of PS decreased by 28% with a concomitant increase in PC.The observed decrease of 22:6n-3 species along with PS reduction may represent key biochemical changes underlying losses in brain-hippocampal function associated with n-3 deficiency. 相似文献
86.
The permanent implantation of electronic probes capable of recording neural activity patterns requires long-term electrical insulation of these devices by biopassive coatings. In this work, the material properties and neural cell compatibility of a novel polymeric material, poly(trivinyltrimethylcyclotrisiloxane) (poly(V3D3)), are demonstrated to be suitable for application as permanently bioimplanted electrically insulating films. The poly(V3D3) polymeric films are synthesized by initiated chemical vapor deposition (iCVD), allowing for conformal and flexible encapsulation of fine wires. The poly(V3D3) also exhibits high adhesive strength to silicon substrates, a common material of manufacture for neural probes. The poly(V3D3) films were found to be insoluble in both polar and nonpolar solvents, consistent with their highly cross-linked structure. The films are pinhole-free and extremely smooth, having a root-mean-square (rms) roughness of 0.4 nm. The material possesses a bulk resistivity of 4 x 1015 Ohm-cm exceeding that of Parylene-C, the material currently used to insulate neurally implanted devices. The iCVD poly(V3D3) films are hydrolytically stable and are demonstrated to maintain their electrical properties under physiological soak conditions, and constant electrical bias, for more than 2 years. In addition, biocompatibility studies with PC12 neurons demonstrate that this material is noncytotoxic and does not influence cell proliferation. 相似文献
87.
Usha K. Urs David J. Sharkey Thomas S. Peat Wayne A. Hendrickson H. M. Krishna Murthy 《Proteins》1995,23(1):111-114
Thermus aquaticus DNA polymerase I is an enzyme that is of both physiological and technological interest. It carries out template-directed polymerization of DNA at elevated temperatures and is widely used in polymerase chain reaction (PCR). We have obtained crystals of the enzyme that diffracts X-rays to at least 3.0 Å resolution in a cubic space group. Determination of the three-dimensional structure of the native enzyme along with those of relevant complexes will greatly enhance our knowledge of molecular events involved in DNA replication, will permit improvements in PCR, and will add to our knowledge of the structural bases of thermo stability in proteins. © 1995 Wiley-Liss, Inc. 相似文献
88.
Teng BQ Grider JR Murthy KS 《American journal of physiology. Gastrointestinal and liver physiology》2001,281(3):G718-G725
Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) interact with VPAC(2) receptors in rabbit and guinea pig (GP) gastric muscle but with functionally distinct VIP and PACAP receptors in GP tenia coli. This study examined whether selectivity for VIP was determined by two residues (40, 41) in the extracellular domain that differ in the VIP receptors of GP gastric and tenial muscle. A mutant rat VPAC(2) receptor (L40F, L41F), and two chimeric receptors in which the NH(2)-terminal domain of rat VPAC(2) receptor was replaced with that of GP gastric (chimeric-G) or tenia coli (chimeric-T) VIP receptors, were constructed and expressed in COS-1 cells. VIP and PACAP bound with equal affinity to wild-type and mutant rat VPAC(2) receptors and to chimeric-G receptor (IC(50): VIP 0.3 +/- 0.1 to 1.5 +/- 0.4 nM, PACAP 0.4 +/- 0.1 to 2.5 +/- 0.1 nM) and stimulated cAMP with equal potency (EC(50): VIP 13 +/- 5 to 48 +/- 8 nM, PACAP 8 +/- 3 to 31 +/- 14 nM). VIP bound with high affinity also to chimeric-T receptor (IC(50): 0.5 +/- 0.1 nM) and stimulated cAMP with high potency (EC(50): 3 +/- 1 nM). In contrast, PACAP exhibited >1,000-fold less affinity for binding or potency for stimulating cAMP. We conclude that GP tenia coli express a VIP-specific receptor and that selectivity is determined by a pair of extracellular phenylalanine residues. 相似文献
89.
Evani SJ Murthy AK Mareedu N Montgomery RK Arulanandam BP Ramasubramanian AK 《PloS one》2011,6(1):e14492
Systemic bacterial infections elicit inflammatory response that promotes acute or chronic complications such as sepsis, arthritis or atherosclerosis. Of interest, cells in circulation experience hydrodynamic shear forces, which have been shown to be a potent regulator of cellular function in the vasculature and play an important role in maintaining tissue homeostasis. In this study, we have examined the effect of shear forces due to blood flow in modulating the inflammatory response of cells to infection. Using an in vitro model, we analyzed the effects of physiological levels of shear stress on the inflammatory response of monocytes infected with chlamydia, an intracellular pathogen which causes bronchitis and is implicated in the development of atherosclerosis. We found that chlamydial infection alters the morphology of monocytes and trigger the release of pro-inflammatory cytokines TNF-α, IL-8, IL-1β and IL-6. We also found that the exposure of chlamydia-infected monocytes to short durations of arterial shear stress significantly enhances the secretion of cytokines in a time-dependent manner and the expression of surface adhesion molecule ICAM-1. As a functional consequence, infection and shear stress increased monocyte adhesion to endothelial cells under flow and in the activation and aggregation of platelets. Overall, our study demonstrates that shear stress enhances the inflammatory response of monocytes to infection, suggesting that mechanical forces may contribute to disease pathophysiology. These results provide a novel perspective on our understanding of systemic infection and inflammation. 相似文献
90.
Yuko Ueda Kentaro Suzuki Mizuki Kajimoto Kota Fujimoto Mala Mahendroo Masatsugu Ema Gen Yamada Isao Hara 《Experimental Animals》2022,71(4):451
The development of embryonic external genitalia (eExG) into characteristic male structures, such as urethra and penile erectile tissues, depends on 5α-dihydrotestosterone (DHT). Although the corpus cavernosum (CC) is well known as essential for erectile function in adults, its developmental process and its dependency on DHT have been unknown. To reveal the dimorphic formation of the murine CC from the embryonic stage, we first analyzed the production of the protein vascular endothelial growth factor receptor-2 (FLK1) via its expression (hereinafter referred as “expression of FLK1”) and the expression of alpha-smooth muscle actin (ACTA2) and collagen type 1 (COL1A1) in developing external genitalia. The 5-α reductase type 2 encoded by the SRD5A2 gene has been suggested to be a crucial enzyme for male sexual differentiation, as it converts testosterone (T) into DHT in the local urogenital organs. In fact, SRD5A2 mutation results in decreased synthesis of DHT, which leads to various degrees of masculinized human external genitalia (ExG). We further investigated the expression profile of SRD5A2 during the formation of the murine CC. We observed that SRD5A2 was expressed in smooth muscle of the CC. To determine the role of SRD5A2 in CC formation, we analyzed the formation of erectile tissue in the male Srd5a2 KO mice and measured the levels of androgens in the ExG by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Intriguingly, there were no obvious defects in the CCs of male Srd5a2 KO mice, possibly due to increased T levels. The current study suggests possible redundant functions of androgens in CC development. 相似文献