首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1132篇
  免费   71篇
  国内免费   2篇
  2021年   9篇
  2018年   16篇
  2017年   7篇
  2016年   21篇
  2015年   19篇
  2014年   21篇
  2013年   44篇
  2012年   47篇
  2011年   48篇
  2010年   36篇
  2009年   33篇
  2008年   51篇
  2007年   50篇
  2006年   52篇
  2005年   44篇
  2004年   43篇
  2003年   41篇
  2002年   31篇
  2001年   43篇
  2000年   34篇
  1999年   31篇
  1998年   23篇
  1997年   7篇
  1996年   13篇
  1995年   11篇
  1994年   16篇
  1993年   9篇
  1992年   20篇
  1991年   19篇
  1990年   14篇
  1989年   24篇
  1988年   27篇
  1987年   14篇
  1986年   32篇
  1985年   21篇
  1984年   21篇
  1983年   16篇
  1982年   11篇
  1981年   8篇
  1980年   10篇
  1979年   25篇
  1978年   18篇
  1977年   9篇
  1976年   12篇
  1975年   21篇
  1974年   15篇
  1973年   11篇
  1972年   7篇
  1971年   6篇
  1967年   5篇
排序方式: 共有1205条查询结果,搜索用时 266 毫秒
991.
Pulmonary hypertension (PHT) in neonates is often refractory to the current best therapy, inhaled nitric oxide (NO). The utility of a new class of pulmonary vasodilators, Rho-kinase (ROCK) inhibitors, has not been examined in neonatal animals. Our objective was to examine the activity and expression of RhoA/ROCK in normal and injured pulmonary arteries and to determine the short-term pulmonary hemodynamic (assessed by pulse wave Doppler) effects of ROCK inhibitors (15 mg/kg ip Y-27632 or 30 mg/kg ip fasudil) in two neonatal rat models of chronic PHT with pulmonary vascular remodeling (chronic hypoxia, 0.13 Fi(O(2)), or 1 mg.kg(-1).day(-1) ip chronic bleomycin for 14 days from birth). Activity of the RhoA/ROCK pathway and ROCK expression were increased in hypoxia- and bleomycin-induced PHT. In both models, severe PHT [characterized by raised pulmonary vascular resistance (PVR) and impaired right ventricular (RV) performance] did not respond acutely to inhaled NO (20 ppm for 15 min) or to a single bolus of a NO donor, 3-morpholinosydnonimine hydrochloride (SIN-1; 2 mug/kg ip). In contrast, a single intraperitoneal bolus of either ROCK inhibitor (Y-27632 or fasudil) completely normalized PVR but had no acute effect on RV performance. ROCK-mediated vasoconstriction appears to play a key role in chronic PHT in our two neonatal rat models. Inhibitors of ROCK have potential as a testable therapy in neonates with PHT that is refractory to NO.  相似文献   
992.
Chlamydia has been shown to evade host-specific IFN-gamma-mediated bacterial killing; however, IFN-gamma-deficient mice exhibit suboptimal late phase vaginal Chlamydia muridarum clearance, greater dissemination, and oviduct pathology. These findings introduce constraints in understanding results from murine chlamydial vaccination studies in context of potential implications to humans. In this study, we used mice deficient in either IFN-gamma or the IFN-gamma receptor for intranasal vaccination with a defined secreted chlamydial Ag, chlamydial protease-like activity factor (CPAF), plus CpG and examined the role of IFN-gamma derived from adoptively transferred Ag-specific CD4+ T cells in protective immunity against genital C. muridarum infection. We found that early Ag-specific IFN-gamma induction and CD4+ T cell infiltration correlates with the onset of genital chlamydial clearance. Adoptively transferred IFN-gamma competent CPAF-specific CD4+ T cells failed to enhance the resolution of genital chlamydial infection within recipient IFN-gamma receptor-deficient mice. Conversely, IFN-gamma production from adoptively transferred CPAF-specific CD4+ T cells was sufficient in IFN-gamma-deficient mice to induce early resolution of infection and reduction of subsequent pathology. These results provide the first direct evidence that enhanced anti-C. muridarum protective immunity induced by Ag-specific CD4+ T cells is dependent upon IFN-gamma signaling and that such cells produce sufficient IFN-gamma to mediate the protective effects. Additionally, MHC class II pathway was sufficient for induction of robust protective anti-C. muridarum immunity. Thus, targeting soluble candidate Ags via MHC class II to CD4+ T cells may be a viable vaccine strategy to induce optimal IFN-gamma production for effective protective immunity against human genital chlamydial infection.  相似文献   
993.
We have previously demonstrated the protective efficacy of intranasal vaccination with a defined Francisella tularensis subsp. novicida DeltaiglC mutant (KKF24) against pulmonary F. novicida U112 challenge. In this study, we further characterized the mechanisms of KKF24-induced immunity. Intranasally vaccinated KKF24 C57BL/6 major histocompatibility class (MHC) class II-/- mice produced minimal antigen-specific interferon (IFN)-gamma and serum antibodies and were highly susceptible (0% survival) to F. novicida challenge, compared to MHC class I-/- or wild-type mice (both 100% survival). Protective immunity could be transferred by immune serum into recipient wild type, but not IFN-gamma-/- mice. The protective effect of KKF24 vaccination against the respiratory F. novicida U112 challenge was not abrogated by anti-CD4 neutralizing antibody treatment and was not conferred by adoptive transfer of KKF24-specific CD4+ T cells. The protective effect of antibody was partially dependent upon Fc receptor-mediated clearance. Taken together, our data indicate that CD4+ T cells are required for priming, but not during the effector phase, of anti-KKF24 antibody-mediated IFN-gamma-dependent immunity against pulmonary F. novicida infection.  相似文献   
994.
The crystal structure of a chimera of Plasmodium falciparum (Pf) and human hypoxanthine guanine phosphoribosyltransferases (HGPRT), which consists of the core of the protein from the human enzyme and the hood region from the Pf enzyme, has been determined as a complex with the product guanosine monophosphate (GMP). The chimera can utilize hypoxanthine, guanine, and xanthine as substrates, similar to the Pf enzyme. It exists as a monomer-dimer mixture in solution, but shifts to a tetramer on addition of phosphoribosyl pyrophosphate (PRPP). The structural studies reveal that the asymmetric unit of the crystal consists of two monomers of the chimeric HGPRT. Surprisingly, the dimer interface of the chimera is the less extensive AC interface of the parent HGPRTs. An analysis of the crystal structures of the various human HGPRTs provides an explanation for the oligomeric characteristics of the chimera. Pro93 and Tyr197 form part of crucial interactions holding together the AB interface in the unliganded or GMP-bound forms of HGPRT, while Pro93 and His26 interact at the interface after binding of PRPP. Replacement of Tyr197 of human HGPRT by Ile207 in the chimera disrupts the interaction at the AB interface in the absence of PRPP. In the presence of PRPP, the interaction between Pro93 and His26 could restore the AB interface, shifting the chimeric enzyme to a tetrameric state. The structure provides valuable insights into the differences in the AB interface between Pf and human HGPRTs, which may be useful for designing selective inhibitors against the parasite enzyme.  相似文献   
995.
Simanshu DK  Savithri HS  Murthy MR 《Proteins》2008,70(4):1379-1388
Propionate kinase catalyses the last step in the anaerobic breakdown of L-threonine to propionate in which propionyl phosphate and ADP are converted to propionate and ATP. Here we report the structures of propionate kinase (TdcD) in the native form as well as in complex with diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) by X-ray crystallography. Structure of TdcD obtained after cocrystallization with ATP showed Ap4A bound to the active site pocket suggesting the presence of Ap4A synthetic activity in TdcD. Binding of Ap4A to the enzyme was confirmed by the structure determination of a TdcD-Ap4A complex obtained after cocrystallization of TdcD with commercially available Ap4A. Mass spectroscopic studies provided further evidence for the formation of Ap4A by propionate kinase in the presence of ATP. In the TdcD-Ap4A complex structure, Ap4A is present in an extended conformation with one adenosine moiety present in the nucleotide binding site and other in the proposed propionate binding site. These observations tend to support direct in-line transfer of phosphoryl group during the kinase reaction.  相似文献   
996.
Murthy M  Fiete I  Laurent G 《Neuron》2008,59(6):1009-1023
The mushroom body is an insect brain structure required for olfactory learning. Its principal neurons, the Kenyon cells (KCs), form a large cell population. The neuronal populations from which their olfactory input derives (olfactory sensory and projection neurons) can be identified individually by genetic, anatomical, and physiological criteria. We ask whether KCs are similarly identifiable individually, using genetic markers and whole-cell patch-clamp in vivo. We find that across-animal responses are as diverse within the genetically labeled subset as across all KCs in a larger sample. These results combined with those from a simple model, using projection neuron odor responses as inputs, suggest that the precise circuit specification seen at earlier stages of odor processing is likely absent among the mushroom body KCs.  相似文献   
997.
The mechanism by which acetylcholine (ACh) decreases systemic arterial pressure and hindlimb vascular resistance was investigated in the anesthetized rat. ACh injections caused dose-dependent decreases in systemic arterial pressure and hindlimb vascular resistance. N(omega)-nitro-L-arginine methyl ester (L-NAME) had little effect on the magnitude of depressor and vasodilator responses but decreased response duration when baseline parameters were corrected by a nitric oxide (NO) donor infusion. The decrease in the duration of the ACh depressor response was prevented by the administration of excess L-arginine. The L-NAME-resistant component of the depressor response to ACh was attenuated by ebselen, a glutathione peroxidase mimic. The calcium-activated potassium (K(Ca)) antagonists charybdotoxin (ChTX) and apamin decreased the magnitude but not the duration of the hindlimb vasodilator response to ACh. The combination of L-NAME, ChTX, and apamin reduced the magnitude and duration of the vasodilator response to ACh but not to sodium nitroprusside. Vasodepressor and hindlimb vasodilator responses to ACh were not modified by cytochrome P-450 and cyclooxygenase pathway inhibitors. These results suggest that the hindlimb vasodilator response to ACh has an initial L-NAME-resistant component mediated by the activation of K(Ca) channels and a sustained L-NAME-dependent component. The results with ebselen suggest that the L-NAME-resistant component of the depressor response involves a peroxide-sensitive mechanism. The present study suggests that vasodilator responses to ACh are not mediated by cytochrome P-450 products, since miconazole and 1-aminobentriazole alone or in combination did not affect either component of the response. The present data suggest that the hindlimb vasodilator response to ACh in the rat is mediated by two mechanisms with an initial ChTX- and apamin-sensitive, L-NAME-resistant phase not mediated by cytochrome P-450 products and a secondary sustained phase mediated by NO.  相似文献   
998.
The smooth muscle of the gut expresses mainly G(s) protein-coupled vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide receptors (VPAC(2) receptors), which belong to the secretin family of G protein-coupled receptors. The extent to which PKA and G protein-coupled receptor kinases (GRKs) participate in homologous desensitization varies greatly among the secretin family of receptors. The present study identified the novel role of PKA in homologous desensitization of VPAC(2) receptors via the phosphorylation of GRK2 at Ser(685). VIP induced phosphorylation of GRK2 in a concentration-dependent fashion, and the phosphorylation was abolished by blockade of PKA with cell-permeable myristoylated protein kinase inhibitor (PKI) or in cells expressing PKA phosphorylation-site deficient GRK2(S685A). Phosphorylation of GRK2 increased its activity and binding to G betagamma. VIP-induced phosphorylation of VPAC(2) receptors was abolished in muscle cells expressing kinase-deficient GRK2(K220R) and attenuated in cells expressing GRK2(S685A) or by PKI. VPAC(2) receptor internalization (determined from residual (125)I-labeled VIP binding and receptor biotinylation after a 30-min exposure to VIP) was blocked in cells expressing GRK2(K220R) and attenuated in cells expressing GRK2(S685A) or by PKI. Finally, VPAC(2) receptor degradation (determined from residual (125)I-labeled VIP binding and receptor expression after a prolonged exposure to VIP) and functional VPAC(2) receptor desensitization (determined from the decrease in adenylyl cyclase activity and cAMP formation after a 30-min exposure to VIP) were abolished in cells expressing GRK2(K220R) and attenuated in cells expressing GRK2(S685A). These results demonstrate that in gastric smooth muscle VPAC(2) receptor phosphorylation is mediated by GRK2. Phosphorylation of GRK2 by PKA enhances GRK2 activity and its ability to induce VPAC(2) receptor phosphorylation, internalization, desensitization, and degradation.  相似文献   
999.
The present study characterized the signalling pathways initiated by the bioactive lipid, LPA (lysophosphatidic acid) in smooth muscle. Expression of LPA(3) receptors, but not LPA(1) and LPA(2), receptors was demonstrated by Western blot analysis. LPA stimulated phosphoinositide hydrolysis, PKC (protein kinase C) and Rho kinase (Rho-associated kinase) activities: stimulation of all three enzymes was inhibited by expression of the G(alphaq), but not the G(alphai), minigene. Initial contraction and MLC(20) (20 kDa regulatory light chain of myosin II) phosphorylation induced by LPA were abolished by inhibitors of PLC (phospholipase C)-beta (U73122) or MLCK (myosin light-chain kinase; ML-9), but were not affected by inhibitors of PKC (bisindolylmaleimide) or Rho kinase (Y27632). In contrast, sustained contraction, and phosphorylation of MLC(20) and CPI-17 (PKC-potentiated inhibitor 17 kDa protein) induced by LPA were abolished selectively by bisindolylmaleimide. LPA-induced activation of IKK2 {IkappaB [inhibitor of NF-kappaB (nuclear factor kappaB)] kinase 2} and PKA (protein kinase A; cAMP-dependent protein kinase), and degradation of IkappaBalpha were blocked by the RhoA inhibitor (C3 exoenzyme) and in cells expressing dominant-negative mutants of IKK2(K44A) or RhoA(N19RhoA). Phosphorylation by Rho kinase of MYPT1 (myosin phosphatase targeting subunit 1) at Thr(696) was masked by phosphorylation of MYPT1 at Ser(695) by PKA derived from IkappaB degradation via RhoA, but unmasked in the presence of PKI (PKA inhibitor) or C3 exoenzyme and in cells expressing IKK2(K44A). We conclude that LPA induces initial contraction which involves activation of PLC-beta and MLCK and phosphorylation of MLC(20), and sustained contraction which involves activation of PKC and phosphorylation of CPI-17 and MLC(20). Although Rho kinase was activated, phosphorylation of MYPT1 at Thr(696) by Rho kinase was masked by phosphorylation of MYPT1 at Ser(695) via cAMP-independent PKA derived from the NF-kappaB pathway.  相似文献   
1000.
Recombinant interleukin-2 (IL-2) therapy for malignancy is associated with a pulmonary vascular leakage syndrome (VLS) similar to that seen in sepsis. We investigated the possibility that the IL-2-induced VLS may be associated with the release of peroxynitrite (ONOO), and used a model of IL-2-induced VLS in sheep to test the effects of the ONOO decomposition catalyst WW-85. Eighteen sheep were chronically instrumented and randomly divided into three groups (n = 6 per group): sham: lactated Ringer’s solution, control: IL-2, and treatment: IL-2 and WW-85. Treatment with WW-85 significantly improved lung transvascular fluid flux, decreased lipid peroxidation, limited iNOS as well as PAR intensity, prevented tachycardia, and attenuated the increase in core body temperature resulting from IL-2 treatment. These findings suggest that ONOO plays a pivotal role in the pathology of IL-2-induced pulmonary VLS, and that WW-85 may become a useful treatment option.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号