首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1135篇
  免费   71篇
  国内免费   2篇
  2022年   8篇
  2021年   9篇
  2018年   16篇
  2017年   7篇
  2016年   21篇
  2015年   19篇
  2014年   21篇
  2013年   44篇
  2012年   47篇
  2011年   48篇
  2010年   36篇
  2009年   33篇
  2008年   51篇
  2007年   50篇
  2006年   52篇
  2005年   44篇
  2004年   43篇
  2003年   41篇
  2002年   31篇
  2001年   43篇
  2000年   34篇
  1999年   31篇
  1998年   23篇
  1997年   7篇
  1996年   13篇
  1995年   11篇
  1994年   16篇
  1993年   9篇
  1992年   20篇
  1991年   19篇
  1990年   14篇
  1989年   24篇
  1988年   27篇
  1987年   14篇
  1986年   32篇
  1985年   21篇
  1984年   21篇
  1983年   16篇
  1982年   11篇
  1981年   8篇
  1980年   10篇
  1979年   25篇
  1978年   18篇
  1977年   9篇
  1976年   12篇
  1975年   21篇
  1974年   15篇
  1973年   11篇
  1972年   7篇
  1971年   6篇
排序方式: 共有1208条查询结果,搜索用时 15 毫秒
921.
Ozone present in the photochemical smog or generated at the inflammatory sites is known to oxidize cholesterol and its 3-acyl esters. The oxidation results in the formation of multiple "ozone-specific" oxysterols, some of which are known to cause abnormalities in the metabolism of cholesterol and exert cytotoxicity. The ozone-specific oxysterols have been shown to favor the formation of atherosclerotic plaques and amyloid fibrils involving pro-oxidant processes. In the present communication, cultured murine GT1-7 hypothalamic neurons were studied in the context of cholesterol metabolism, formation of reactive oxygen species, intracellular Ca2 + levels and cytotoxicity using two most commonly occurring cholesterol ozonolysis products, 3beta- hydroxy-5-oxo-5,6-secocholestan-6-al (ChSeco) and 5beta, 6beta-epoxy-cholesterol (ChEpo). It was found that ChSeco elicited cytotoxicity at lower concentration (IC50 = 21 +/- 2.4 microM) than did ChEpo (IC50 = 43 +/- 3.7 microM). When tested at their IC50 concentrations in GT1-7 cells, both ChSeco and ChEpo resulted in the generation of ROS, the magnitude of which was comparable. N-acetyl-l-cysteine and Trolox attenuated the cytotoxic effects of ChSeco and ChEpo. The intracellular Ca2 + levels were not altered by either ChSeco or ChEpo. Methyl-beta-cyclodextrins, which cause depletion of cellular cholesterol, prevented ChSeco- but not ChEpo-induced cytotoxicity. The cell death caused by ChEpo, but not ChSeco, was prevented by exogenous cholesterol. Although oxidative stress plays a significant role, the results of the present study indicate differences in the pathways of cell death induced by ChSeco and ChEpo in murine GT1-7 hypothalamic neurons.  相似文献   
922.
The objective of this work was to develop tablet formulations of nimesulide-β-cyclodextrin (NI-β-CD) and meloxicam-γ-cyclodextrin (ME-γ-CD) binary systems. In the case of nimesulide, 3 types of binary systems—physical mixtures, kneaded systems, and coevaporated systems—were studied. In the case of meloxicam, 2 types of binary systems—physical mixtures and kneaded systems—were investigated. Both drug-CD binary systems were prepared at 1∶1 and 1∶2 molar ratio (1∶1M and 1∶2M) and used in formulation studies. The tablet formulations containing drug-CD binary systems prepared by the wet granulation and direct compression methods showed superior dissolution properties when compared with the formulations of the corresponding pure drug formulations. Overall, the dissolution properties of tablet formulations prepared by the direct compression method were superior to those of tablets prepared by the wet granulation method. Selected tablet formulations showed good stability with regard to drug content, disintegration time, hardness, and in vitro dissolution properties over 6 months at 40°C±2°C and 75% relative humidity. Published: May 11, 2007  相似文献   
923.
Malaria is a global disease infecting several million individuals annually. Malarial infection is particularly severe in the poorest parts of the world and is a major drain on their limited resources. Development of drug resistance and absence of a preventive vaccine have led to an immediate necessity for identifying new drug targets to combat malaria. Understanding the intricacies of parasite biology is essential to design novel intervention strategies that can prevent the growth of the parasite. The structural biology approach towards this goal involves the identification of key differences in the structures of the human and parasite enzymes and the determination of unique protein structures essential for parasite survival. This review covers the work on structural biology of plasmodial proteins carried out during the period of January 2006 to June 2007.  相似文献   
924.
925.
Immobilized extracellular matrix proteins and neurotrophins have been extensively studied to enhance neuronal adhesion and proliferation on surfaces for applications in nerve tissue engineering and neuroprosthetic devices. This article describes how the coimmobilization of laminin, an extracellular matrix protein and nerve growth factor (NGF), a neurotrophin can enhance neurite outgrowth observed separately with each type of molecule. In the absence of immobilized NGF, PC12 neurite outgrowth is influenced strongly by the presence of NGF in solution and unaffected by significant increases in laminin surface density (18.7–93.5 ng/mm2). However, when both laminin and NGF are immobilized together, the surface density of laminin is an important factor in determining whether or not the neurite outgrowth‐promoting effect of NGF can be obtained. PC12 neurite outgrowth on surfaces with coimmobilized laminin and NGF with surface densities of 27.6 ng/mm2 and 1.4 ng/mm2, respectively, are similar to that observed on surfaces with immobilized laminin and dissolved NGF. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   
926.
Quantification of the differential expression of metabolic enzyme and heat-shock protein genes (Hsp) during early embryogenesis in diapause and non-diapause eggs of the silkworm B. mori was carried out by semi-quantitative RT-PCR. Data analysis revealed that, the phosphofructokinase (PFK) expression started at a higher level in the early stage (6 h after oviposition) in non-diapause eggs, while in diapause induced eggs, it started at a lower level. However, the PFK gene expression in diapause eggs was comparatively higher than in non-diapause eggs. PFK facilitates use of carbohydrate reserves. The lower level of PFK gene expression in the early stage of diapause induced eggs but comparatively higher level of expression than in non-diapause eggs is due to enzyme inactivation via protein phosphorylation during early embryogenesis followed by de-phosphorylation in later stage. The sorbitol dehydrogenase-2 (SDH-2) gene was down regulated in diapause induced eggs up to 24 h and its expression levels in diapause induced eggs coincided with that of PFK gene at 48h in non-diapause eggs. During carbohydrate metabolism, there is an initial temporary accumulation of sorbitol which acts as protectant. The down regulation of SDH-2 gene during the first 24 hours in diapause induced eggs was due to the requirement of sorbitol as protectant. However, since the diapause process culminates by 48 h, the SDH-2 gene expression increased and coincided with that of PFK gene expression. The trehalase (Tre) gene expression was at a lower level in diapause induced eggs compared to non-diapausing eggs. The induction of Tre activity is to regulate uptake and use of sugar by the tissues. The non-diapause eggs revealed maximum expression of GPase gene with major fluctuations as well as an overall higher expression compared to diapause induced eggs. The diapause process requires less energy source which reflects lower activity of the gene. Heat shock protein (Hsp) genes (Hsp20.4, 40, 70, and 90) revealed differential levels of expression in both the eggs at all stages of embryonic development. The present study thus provides an overview of the differential expression levels of metabolic enzyme and Hsp genes in non-diapause and diapause induced eggs of multivoltine silkworm B. mori within 48 h after oviposition, confirming the major role of in early embryogenesis.  相似文献   
927.
Mechanism of action of GII (100 mg/kg body weight, po for 15 days) purified from fenugreek (T. foenum-graecum) seeds was studied in the sub-diabetic and moderately diabetic rabbits. In the sub-diabetic rabbits it did not change much the content of total lipids, glycogen and proteins in the liver, muscle and heart (glycogen was not studied in the heart). However, in the moderately diabetic rabbits same treatment decreased total lipids more in the liver (21%) than those in the heart and muscle. Total protein content increased (14%) in the liver but negligible change (5-7%) was observed in heart and muscle. Glycogen increased (17%) in the liver but not in the muscle of the moderately diabetic rabbits (glycogen was not estimated in the heart). Among the enzymes of glycolysis, activity of glucokinase was not affected in the liver of both the sub-diabetic and moderately diabetic rabbits. Phosphofructokinase and pyruvate kinase activity in both sub-diabetic and moderately diabetic rabbits increased (13-50%) indicating stimulation of glycolysis. The activity of gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-diphosphatase of the sub-diabetic rabbits decreased in the liver (15-20%) but not in the kidneys. In the moderately diabetic rabbits after treatment with GII, glucokinase in the liver was not affected much (-9%) but increased well in the muscle (40%). Phosphofructokinase and pyruvate kinase were moderately increased both in the liver and the muscle (18-23%). The gluconeogenic enzyme glucose-6-phosphatase decreased reasonably well in the liver and kidneys (22, 32%). Fructose-1,6-diphosphatase decreased only slightly (10, 9%) in the moderately diabetic rabbits. Thus GII seems to decrease lipid content of liver and stimulate the enzymes of glycolysis (except glucokinase) and inhibit enzymes of gluconeogenesis in the liver of the diabetic especially moderately diabetic rabbits.  相似文献   
928.
Marine bacteria from the hull of a ship in the form of biofilms or microfouling were isolated, cultured, and identified by phylogenetic analysis using 16S rDNA sequences. With an average length of 946 bp, all the 16 sequences were classified using the Ribosomal database project (RDP) and were submitted to the National Center for Biotechnology Information. Phylogenetic analysis using 16S rDNA sequences indicated that the 16 strains belonged to the Firmicutes (IK-MB6 Exiguobacterium aurantiacum, IK-MB7 Exiguobacterium arabatum, IK-MB8 Exiguobacterium arabatum, IK-MB9 Jeotgalibacillus alimentarius, IK-MB10 Bacillus megaterium, IK-MB11 Bacillus pumilus, IK-MB12 Bacillus pumilus, IK-MB13 Bacillus pumilus, IK-MB14 Bacillus megaterium), High GC, Gram-positive bacteria (IK-MB2 Micrococcus luteus, IK-MB5 Micrococcus luteus, IK-MB16 Arthrobacter mysorens), G-Proteobacteria (IK-MB3 Halomonas aquamarina, IK-MB15 Halotalea alkalilenta), CFB group bacteria (IK-MB1 Myroides odoratimimus), and Enterobacteria (IK-MB4 Proteus mirabilis). Among the 16 strains, representatives of the Firmicutes were dominant (56.25%) compared to the high GC, Gram-positive bacteria (18.75%), G-Proteobacteria (12.5%), CFB group bacteria (6.25%), and Enterobacteria (6.25%). Analysis revealed that majority of marine species found in marine biofilm are of anthropogenic origin.  相似文献   
929.
Life cycle analysis of algae biodiesel   总被引:1,自引:0,他引:1  

Background, aim, and scope  

Algae biomass has great promise as a sustainable alternative to conventional transportation fuels. In this study, a well-to-pump life cycle assessment (LCA) was performed to investigate the overall sustainability and net energy balance of an algal biodiesel process. The goal of this LCA was to provide baseline information for the algae biodiesel process.  相似文献   
930.

Background

Adenosine is generated in response to cellular stress and damage and is elevated in the lungs of patients with chronic lung disease. Adenosine signaling through its cell surface receptors serves as an amplifier of chronic lung disorders, suggesting adenosine-based therapeutics may be beneficial in the treatment of lung diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Previous studies in mouse models of chronic lung disease demonstrate that the key components of adenosine metabolism and signaling are altered. Changes include an up-regulation of CD73, the major enzyme of adenosine production and down-regulation of adenosine deaminase (ADA), the major enzyme for adenosine metabolism. In addition, adenosine receptors are elevated.

Methodology/Principal Findings

The focus of this study was to utilize tissues from patients with COPD or IPF to examine whether changes in purinergic metabolism and signaling occur in human disease. Results demonstrate that the levels of CD73 and A2BR are elevated in surgical lung biopsies from severe COPD and IPF patients. Immunolocalization assays revealed abundant expression of CD73 and the A2BR in alternatively activated macrophages in both COPD and IPF samples. In addition, mediators that are regulated by the A2BR, such as IL-6, IL-8 and osteopontin were elevated in these samples and activation of the A2BR on cells isolated from the airways of COPD and IPF patients was shown to directly induce the production of these mediators.

Conclusions/Significance

These findings suggest that components of adenosine metabolism and signaling are altered in a manner that promotes adenosine production and signaling in the lungs of patients with COPD and IPF, and provide proof of concept information that these disorders may benefit from adenosine-based therapeutics. Furthermore, this study provides the first evidence that A2BR signaling can promote the production of inflammatory and fibrotic mediators in patients with these disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号