首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   384篇
  免费   53篇
  437篇
  2023年   5篇
  2022年   4篇
  2016年   2篇
  2015年   11篇
  2014年   9篇
  2013年   12篇
  2012年   22篇
  2011年   23篇
  2010年   9篇
  2009年   10篇
  2008年   17篇
  2007年   20篇
  2006年   9篇
  2005年   17篇
  2004年   12篇
  2003年   19篇
  2002年   17篇
  2001年   22篇
  2000年   19篇
  1999年   12篇
  1998年   7篇
  1997年   12篇
  1996年   3篇
  1995年   10篇
  1994年   6篇
  1992年   8篇
  1991年   8篇
  1990年   11篇
  1989年   4篇
  1988年   2篇
  1987年   6篇
  1986年   5篇
  1985年   6篇
  1984年   3篇
  1983年   7篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1979年   8篇
  1978年   2篇
  1977年   4篇
  1974年   5篇
  1973年   2篇
  1970年   2篇
  1968年   2篇
  1967年   2篇
  1966年   2篇
  1963年   3篇
  1900年   2篇
  1888年   2篇
排序方式: 共有437条查询结果,搜索用时 0 毫秒
1.
2.
We examined the effect of interacting dipicolinic acid and its calcium chelate on the wet and dry density of DNA. Complexes are produced whose densities are different from those of the individual components. Also, we observed two modes of binding, one strong the other weak, between DPA or CaDPA and DNA. The strength of the binding modes was reflected in the rate of dissolution of the complexes as monitored by changes in wet density with time and temperature. We conclude from these and other data in the literature that the interaction of dipicolinic acid with DNA not only influences the spore wet density and the ratio of core/core+ cortex volume, but may also influence the spore heat resistance.  相似文献   
3.
Abstract Methylosinus trichosporium OB3b synthesizes a soluble cytoplasmic methane monooxygenase when grown in copper-depleted medium and a membrane-bound particulate methane monooxygenase under copper-replete conditions. The genes encoding the hydroxylase component of soluble methane monooxygenase, carried on a plasmid in Escherichia coli , were insertionally inactivated using a kanamycin cassette and transferred back into M. trichosporium by conjugation. Marker-exchange mutagenesis, via a double homologous recombination event, yielded a soluble methane monooxygenase-negative mutant which grew only on methane using the particulate methane monooxygenase during copper-replete growth conditions, thus proving that the two methane oxidation systems in this methanotroph are genetically distinct.  相似文献   
4.
Facultative methanotrophs revisited   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   
5.
The tradeoff between colonization and competitive ability has been proposed as a mechanism for ecological succession, and this tradeoff has been demonstrated in multiple successional communities. The tradeoff between competitive ability and predation resistance is also a widely-described phenomenon; however, this tradeoff is not usually postulated as a cause of ecological succession. Early successional species that arrive before predator colonization could be either (1) less vulnerable to predation than their successors, by virtue of being poor competitors (direct competition-predation tradeoff); or (2) equally or more vulnerable to predation, because they normally colonize ahead of predators in succession and therefore are not evolutionarily adapted to avoid predators that they rarely encounter (no competition–predation tradeoff). To test these alternative hypotheses, we established water-filled containers in an oak–hickory forest. We allowed half of the containers to be naturally colonized by early-successional Culex mosquitoes, mid-successional Aedes mosquitoes, and the mosquito predator Toxorhynchites rutilus. In the other half of the containers, we prevented Aedes colonization via systematic removal of Aedes eggs, but allowed Culex and T. rutilus to colonize. The numbers of mature Culex larvae and pupae, and later the total number of Culex, were significantly greater in containers where Aedes had been removed, which suggests that Culex are competitively suppressed by Aedes. Toxorhynchites rutilus abundance and colonization rate were unaffected by the removal of Aedes, and densities of both Culex and Aedes decreased significantly with T. rutilus abundance in both treatments. In-laboratory bioassays showed that Culex were significantly more vulnerable to predation by T. rutilus than were Aedes. These data are consistent with the hypothesis that Culex and Aedes demonstrate a direct colonization–competition tradeoff, and are inconsistent with the hypothesis of a direct competition–predation tradeoff.  相似文献   
6.
Predicting the distribution of metabolic fluxes in biochemical networks is of major interest in systems biology. Several databases provide metabolic reconstructions for different organisms. Software to analyze flux distributions exists, among others for the proprietary MATLAB environment. Given the large user community for the R computing environment, a simple implementation of flux analysis in R appears desirable and will facilitate easy interaction with computational tools to handle gene expression data. We extended the R software package BiGGR, an implementation of metabolic flux analysis in R. BiGGR makes use of public metabolic reconstruction databases, and contains the BiGG database and the reconstruction of human metabolism Recon2 as Systems Biology Markup Language (SBML) objects. Models can be assembled by querying the databases for pathways, genes or reactions of interest. Fluxes can then be estimated by maximization or minimization of an objective function using linear inverse modeling algorithms. Furthermore, BiGGR provides functionality to quantify the uncertainty in flux estimates by sampling the constrained multidimensional flux space. As a result, ensembles of possible flux configurations are constructed that agree with measured data within precision limits. BiGGR also features automatic visualization of selected parts of metabolic networks using hypergraphs, with hyperedge widths proportional to estimated flux values. BiGGR supports import and export of models encoded in SBML and is therefore interoperable with different modeling and analysis tools. As an application example, we calculated the flux distribution in healthy human brain using a model of central carbon metabolism. We introduce a new algorithm termed Least-squares with equalities and inequalities Flux Balance Analysis (Lsei-FBA) to predict flux changes from gene expression changes, for instance during disease. Our estimates of brain metabolic flux pattern with Lsei-FBA for Alzheimer’s disease agree with independent measurements of cerebral metabolism in patients. This second version of BiGGR is available from Bioconductor.  相似文献   
7.
Methane monooxygenase (MMO) is the enzyme responsible for the conversion of methane to methanol in methanotrophic bacteria. In addition, this enzyme complex oxidizes a wide range of aliphatic and aromatic compounds in a number of potentially useful biotransformations. In this study, we have used biochemical data obtained from purification and characterization of the soluble MMO from Methylococcus capsulatus (Bath), to identify structural genes encoding this enzyme by oligonucleotide probing. The genes encoding the and subunits of MMO were found to be chromosomally located and were linked in this organism. We report here on the analysis of a recombinant plasmid containing 12 kilobases of Methylococcus DNA and provide the first evidence for the localization and linkage of genes encoding the methane monooxygenase enzyme complex. DNA sequence analysis suggests that the primary structures of the and subunit of MMO are completely novel and the complete sequence of these genes is presented.  相似文献   
8.
Dimethylsulfide (DMS) is a volatile organosulfur compound which has been implicated in the biogeochemical cycling of sulfur and in climate control. Microbial degradation is a major sink for DMS. DMS metabolism in some bacteria involves its oxidation by a DMS monooxygenase in the first step of the degradation pathway; however, this enzyme has remained uncharacterized until now. We have purified a DMS monooxygenase from Hyphomicrobium sulfonivorans, which was previously isolated from garden soil. The enzyme is a member of the flavin-linked monooxygenases of the luciferase family and is most closely related to nitrilotriacetate monooxygenases. It consists of two subunits: DmoA, a 53-kDa FMNH2-dependent monooxygenase, and DmoB, a 19-kDa NAD(P)H-dependent flavin oxidoreductase. Enzyme kinetics were investigated with a range of substrates and inhibitors. The enzyme had a Km of 17.2 (± 0.48) μM for DMS (kcat = 5.45 s−1) and a Vmax of 1.25 (± 0.01) μmol NADH oxidized min−1 (mg protein−1). It was inhibited by umbelliferone, 8-anilinonaphthalenesulfonate, a range of metal-chelating agents, and Hg2+, Cd2+, and Pb2+ ions. The purified enzyme had no activity with the substrates of related enzymes, including alkanesulfonates, aldehydes, nitrilotriacetate, or dibenzothiophenesulfone. The gene encoding the 53-kDa enzyme subunit has been cloned and matched to the enzyme subunit by mass spectrometry. DMS monooxygenase represents a new class of FMNH2-dependent monooxygenases, based on its specificity for dimethylsulfide and the molecular phylogeny of its predicted amino acid sequence. The gene encoding the large subunit of DMS monooxygenase is colocated with genes encoding putative flavin reductases, homologues of enzymes of inorganic and organic sulfur compound metabolism, and enzymes involved in riboflavin synthesis.Dimethylsulfide (DMS) is a volatile organosulfur compound, important in the biogeochemical cycling of sulfur and global climate regulation (4, 9). Bacterial metabolism of DMS is an important sink of the compound in nature and is thought to account for degradation of over 80% of the DMS produced in the marine environment. Although bacterial pathways of DMS degradation have been studied previously in Hyphomicrobium spp. and in Thiobacillus spp. (12, 36), they remain poorly characterized, and few enzymes of DMS metabolism have been purified (see reference 32). DMS monooxygenase was first reported from an assay of NADH-dependent oxygen uptake in the presence of DMS by cell extracts of Hyphomicrobium S (12), an activity also demonstrated in cell extracts of other Hyphomicrobium, Thiobacillus, and Arthrobacter isolates (6, 7, 34), with specific activities around 30 nmol NADH oxidized min−1 mg protein−1. The enzyme has not previously been purified or characterized.The aims of this study were to purify and characterize the DMS monooxygenase enzyme from a member of the genus Hyphomicrobium. Since Hyphomicrobium S is no longer available, studies were undertaken using the type strain of H. sulfonivorans. The strain was originally isolated from garden soil and grows on DMS, as well as the related compounds dimethyl sulfoxide (DMSO) and dimethylsulfone (DMSO2). During growth on DMSO2, H. sulfonivorans first reduces DMSO2 to DMSO by a dimethylsulfone reductase, and subsequently a DMSO reductase converts DMSO to DMS, which is further oxidized to methanethiol and formaldehyde by a DMS monooxygenase. Oxidation of methanethiol to formaldehyde by methanethiol oxidase yields another mole of formaldehyde, which is either assimilated into biomass or oxidized to carbon dioxide to provide reducing equivalents (Fig. (Fig.1).1). DMS monooxygenase activity is present in the soluble protein fraction during growth on these compounds (6, 7). A 53-kDa polypeptide was previously observed in organisms grown on DMS, DMSO, and DMSO2 (6, 7), but its significance in the metabolism of these compounds was unknown.Open in a separate windowFIG. 1.Pathway and enzymes of dimethylsulfone degradation in Hyphomicrobium sulfonivorans S1. Reduction of dimethylsulfone [DMSO2; (CH3)2SO2] to dimethyl sulfoxide [DMSO; (CH3)2SO] and further reduction of DMSO to dimethylsulfide provides the substrate for DMS monooxygenase. Formaldehyde is either assimilated (via the serine cycle) or oxidized to CO2 providing reducing equivalents. Sulfide is oxidized to sulfate; see reference 7 for further details.  相似文献   
9.
Rapid radiometric method for detection of Salmonella in foods.   总被引:4,自引:4,他引:4       下载免费PDF全文
A radiometric method for the detection of Salmonella in foods has been developed which is based on Salmonella poly H agglutinating serum preventing Salmonella from producing 14CO2 from [14C]dulcitol. The method will detect the presence or absence of Salmonella in a product within 30 h compared to 4 to 5 days by routine culture methods. The method has been evaluated against a routine culture method using 58 samples of food. The overall agreement was 91%. Five samples negative for Salmonella by the routine method were positive by the radiometric method. These may have been false positives. However, the routine method may have failed to detect Salmonella due to the presence of large numbers of lactose-fermenting bacteria which hindered isolation of Salmonella colonies on the selective agar plates.  相似文献   
10.
This article describes the use of ultra scale-down studies requiring milliliter quantities of process material to study the clarification of mammalian cell culture broths using industrial-scale continuous centrifuges during the manufacture of a monoclonal antibody for therapeutic use. Samples were pretreated in a small high-speed rotating-disc device in order to mimic the effect on the cells of shear stresses in the feed zone of the industrial scale centrifuges. The use of this feed mimic was shown to predict a reduction of the clarification efficiency by significantly reducing the particle size distribution of the mammalian cells. The combined use of the rotating-disc device and a laboratory-scale test tube centrifuge successfully predicted the separation characteristics of industrial-scale, disc stack centrifuges operating with different feed zones. A 70% reduction in flow rate in the industrial-scale centrifuge was shown to arise from shear effects. A predicted 2.5-fold increase in throughput for the same clarification performance, achieved by the change to a centrifuge using a feed zone designed to give gentler acceleration of the bioprocess fluid, was also verified at large-scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号