首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   53篇
  426篇
  2023年   5篇
  2022年   4篇
  2017年   2篇
  2016年   2篇
  2015年   11篇
  2014年   9篇
  2013年   12篇
  2012年   22篇
  2011年   22篇
  2010年   9篇
  2009年   10篇
  2008年   17篇
  2007年   19篇
  2006年   9篇
  2005年   17篇
  2004年   12篇
  2003年   19篇
  2002年   17篇
  2001年   21篇
  2000年   18篇
  1999年   12篇
  1998年   5篇
  1997年   12篇
  1996年   2篇
  1995年   9篇
  1994年   6篇
  1992年   8篇
  1991年   8篇
  1990年   10篇
  1989年   4篇
  1988年   2篇
  1987年   6篇
  1986年   5篇
  1985年   6篇
  1984年   3篇
  1983年   7篇
  1981年   2篇
  1980年   4篇
  1979年   8篇
  1978年   2篇
  1977年   4篇
  1974年   5篇
  1973年   2篇
  1970年   2篇
  1968年   2篇
  1967年   2篇
  1966年   2篇
  1963年   3篇
  1900年   2篇
  1888年   2篇
排序方式: 共有426条查询结果,搜索用时 15 毫秒
1.
2.
We examined the effect of interacting dipicolinic acid and its calcium chelate on the wet and dry density of DNA. Complexes are produced whose densities are different from those of the individual components. Also, we observed two modes of binding, one strong the other weak, between DPA or CaDPA and DNA. The strength of the binding modes was reflected in the rate of dissolution of the complexes as monitored by changes in wet density with time and temperature. We conclude from these and other data in the literature that the interaction of dipicolinic acid with DNA not only influences the spore wet density and the ratio of core/core+ cortex volume, but may also influence the spore heat resistance.  相似文献   
3.
Abstract Methylosinus trichosporium OB3b synthesizes a soluble cytoplasmic methane monooxygenase when grown in copper-depleted medium and a membrane-bound particulate methane monooxygenase under copper-replete conditions. The genes encoding the hydroxylase component of soluble methane monooxygenase, carried on a plasmid in Escherichia coli , were insertionally inactivated using a kanamycin cassette and transferred back into M. trichosporium by conjugation. Marker-exchange mutagenesis, via a double homologous recombination event, yielded a soluble methane monooxygenase-negative mutant which grew only on methane using the particulate methane monooxygenase during copper-replete growth conditions, thus proving that the two methane oxidation systems in this methanotroph are genetically distinct.  相似文献   
4.
Facultative methanotrophs revisited   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   
5.
The tradeoff between colonization and competitive ability has been proposed as a mechanism for ecological succession, and this tradeoff has been demonstrated in multiple successional communities. The tradeoff between competitive ability and predation resistance is also a widely-described phenomenon; however, this tradeoff is not usually postulated as a cause of ecological succession. Early successional species that arrive before predator colonization could be either (1) less vulnerable to predation than their successors, by virtue of being poor competitors (direct competition-predation tradeoff); or (2) equally or more vulnerable to predation, because they normally colonize ahead of predators in succession and therefore are not evolutionarily adapted to avoid predators that they rarely encounter (no competition–predation tradeoff). To test these alternative hypotheses, we established water-filled containers in an oak–hickory forest. We allowed half of the containers to be naturally colonized by early-successional Culex mosquitoes, mid-successional Aedes mosquitoes, and the mosquito predator Toxorhynchites rutilus. In the other half of the containers, we prevented Aedes colonization via systematic removal of Aedes eggs, but allowed Culex and T. rutilus to colonize. The numbers of mature Culex larvae and pupae, and later the total number of Culex, were significantly greater in containers where Aedes had been removed, which suggests that Culex are competitively suppressed by Aedes. Toxorhynchites rutilus abundance and colonization rate were unaffected by the removal of Aedes, and densities of both Culex and Aedes decreased significantly with T. rutilus abundance in both treatments. In-laboratory bioassays showed that Culex were significantly more vulnerable to predation by T. rutilus than were Aedes. These data are consistent with the hypothesis that Culex and Aedes demonstrate a direct colonization–competition tradeoff, and are inconsistent with the hypothesis of a direct competition–predation tradeoff.  相似文献   
6.
Predicting the distribution of metabolic fluxes in biochemical networks is of major interest in systems biology. Several databases provide metabolic reconstructions for different organisms. Software to analyze flux distributions exists, among others for the proprietary MATLAB environment. Given the large user community for the R computing environment, a simple implementation of flux analysis in R appears desirable and will facilitate easy interaction with computational tools to handle gene expression data. We extended the R software package BiGGR, an implementation of metabolic flux analysis in R. BiGGR makes use of public metabolic reconstruction databases, and contains the BiGG database and the reconstruction of human metabolism Recon2 as Systems Biology Markup Language (SBML) objects. Models can be assembled by querying the databases for pathways, genes or reactions of interest. Fluxes can then be estimated by maximization or minimization of an objective function using linear inverse modeling algorithms. Furthermore, BiGGR provides functionality to quantify the uncertainty in flux estimates by sampling the constrained multidimensional flux space. As a result, ensembles of possible flux configurations are constructed that agree with measured data within precision limits. BiGGR also features automatic visualization of selected parts of metabolic networks using hypergraphs, with hyperedge widths proportional to estimated flux values. BiGGR supports import and export of models encoded in SBML and is therefore interoperable with different modeling and analysis tools. As an application example, we calculated the flux distribution in healthy human brain using a model of central carbon metabolism. We introduce a new algorithm termed Least-squares with equalities and inequalities Flux Balance Analysis (Lsei-FBA) to predict flux changes from gene expression changes, for instance during disease. Our estimates of brain metabolic flux pattern with Lsei-FBA for Alzheimer’s disease agree with independent measurements of cerebral metabolism in patients. This second version of BiGGR is available from Bioconductor.  相似文献   
7.
Methane monooxygenase (MMO) is the enzyme responsible for the conversion of methane to methanol in methanotrophic bacteria. In addition, this enzyme complex oxidizes a wide range of aliphatic and aromatic compounds in a number of potentially useful biotransformations. In this study, we have used biochemical data obtained from purification and characterization of the soluble MMO from Methylococcus capsulatus (Bath), to identify structural genes encoding this enzyme by oligonucleotide probing. The genes encoding the and subunits of MMO were found to be chromosomally located and were linked in this organism. We report here on the analysis of a recombinant plasmid containing 12 kilobases of Methylococcus DNA and provide the first evidence for the localization and linkage of genes encoding the methane monooxygenase enzyme complex. DNA sequence analysis suggests that the primary structures of the and subunit of MMO are completely novel and the complete sequence of these genes is presented.  相似文献   
8.
The Zoige wetland of the Tibetan Plateau is one of the largest alpine wetlands in the world and a major emission source of methane. Methane oxidation by methanotrophs can counteract the global warming effect of methane released in the wetlands. Understanding methanotroph activity, diversity and metabolism at the molecular level can guide the isolation of the uncultured microorganisms and inform strategy-making decisions and policies to counteract global warming in this unique ecosystem. Here we applied DNA stable isotope probing using 13C-labelled methane to label the genomes of active methanotrophs, examine the methane oxidation potential and recover metagenome-assembled genomes (MAGs) of active methanotrophs. We found that gammaproteobacteria of type I methanotrophs are responsible for methane oxidation in the wetland. We recovered two phylogenetically novel methanotroph MAGs distantly related to extant Methylobacter and Methylovulum. They belong to type I methanotrophs of gammaproteobacteria, contain both mxaF and xoxF types of methanol dehydrogenase coding genes, and participate in methane oxidation via H4MPT and RuMP pathways. Overall, the community structure of active methanotrophs and their methanotrophic pathways revealed by DNA-SIP metagenomics and retrieved methanotroph MAGs highlight the importance of methanotrophs in suppressing methane emission in the wetland under the scenario of global warming.  相似文献   
9.
Dimethylsulfide (DMS) is a volatile organosulfur compound which has been implicated in the biogeochemical cycling of sulfur and in climate control. Microbial degradation is a major sink for DMS. DMS metabolism in some bacteria involves its oxidation by a DMS monooxygenase in the first step of the degradation pathway; however, this enzyme has remained uncharacterized until now. We have purified a DMS monooxygenase from Hyphomicrobium sulfonivorans, which was previously isolated from garden soil. The enzyme is a member of the flavin-linked monooxygenases of the luciferase family and is most closely related to nitrilotriacetate monooxygenases. It consists of two subunits: DmoA, a 53-kDa FMNH2-dependent monooxygenase, and DmoB, a 19-kDa NAD(P)H-dependent flavin oxidoreductase. Enzyme kinetics were investigated with a range of substrates and inhibitors. The enzyme had a Km of 17.2 (± 0.48) μM for DMS (kcat = 5.45 s−1) and a Vmax of 1.25 (± 0.01) μmol NADH oxidized min−1 (mg protein−1). It was inhibited by umbelliferone, 8-anilinonaphthalenesulfonate, a range of metal-chelating agents, and Hg2+, Cd2+, and Pb2+ ions. The purified enzyme had no activity with the substrates of related enzymes, including alkanesulfonates, aldehydes, nitrilotriacetate, or dibenzothiophenesulfone. The gene encoding the 53-kDa enzyme subunit has been cloned and matched to the enzyme subunit by mass spectrometry. DMS monooxygenase represents a new class of FMNH2-dependent monooxygenases, based on its specificity for dimethylsulfide and the molecular phylogeny of its predicted amino acid sequence. The gene encoding the large subunit of DMS monooxygenase is colocated with genes encoding putative flavin reductases, homologues of enzymes of inorganic and organic sulfur compound metabolism, and enzymes involved in riboflavin synthesis.Dimethylsulfide (DMS) is a volatile organosulfur compound, important in the biogeochemical cycling of sulfur and global climate regulation (4, 9). Bacterial metabolism of DMS is an important sink of the compound in nature and is thought to account for degradation of over 80% of the DMS produced in the marine environment. Although bacterial pathways of DMS degradation have been studied previously in Hyphomicrobium spp. and in Thiobacillus spp. (12, 36), they remain poorly characterized, and few enzymes of DMS metabolism have been purified (see reference 32). DMS monooxygenase was first reported from an assay of NADH-dependent oxygen uptake in the presence of DMS by cell extracts of Hyphomicrobium S (12), an activity also demonstrated in cell extracts of other Hyphomicrobium, Thiobacillus, and Arthrobacter isolates (6, 7, 34), with specific activities around 30 nmol NADH oxidized min−1 mg protein−1. The enzyme has not previously been purified or characterized.The aims of this study were to purify and characterize the DMS monooxygenase enzyme from a member of the genus Hyphomicrobium. Since Hyphomicrobium S is no longer available, studies were undertaken using the type strain of H. sulfonivorans. The strain was originally isolated from garden soil and grows on DMS, as well as the related compounds dimethyl sulfoxide (DMSO) and dimethylsulfone (DMSO2). During growth on DMSO2, H. sulfonivorans first reduces DMSO2 to DMSO by a dimethylsulfone reductase, and subsequently a DMSO reductase converts DMSO to DMS, which is further oxidized to methanethiol and formaldehyde by a DMS monooxygenase. Oxidation of methanethiol to formaldehyde by methanethiol oxidase yields another mole of formaldehyde, which is either assimilated into biomass or oxidized to carbon dioxide to provide reducing equivalents (Fig. (Fig.1).1). DMS monooxygenase activity is present in the soluble protein fraction during growth on these compounds (6, 7). A 53-kDa polypeptide was previously observed in organisms grown on DMS, DMSO, and DMSO2 (6, 7), but its significance in the metabolism of these compounds was unknown.Open in a separate windowFIG. 1.Pathway and enzymes of dimethylsulfone degradation in Hyphomicrobium sulfonivorans S1. Reduction of dimethylsulfone [DMSO2; (CH3)2SO2] to dimethyl sulfoxide [DMSO; (CH3)2SO] and further reduction of DMSO to dimethylsulfide provides the substrate for DMS monooxygenase. Formaldehyde is either assimilated (via the serine cycle) or oxidized to CO2 providing reducing equivalents. Sulfide is oxidized to sulfate; see reference 7 for further details.  相似文献   
10.
Entry and fusion of human parainfluenza virus type 3 (HPF3) require the interaction of the viral hemagglutinin-neuraminidase (HN) glycoprotein with its sialic acid receptor. 4-GU-DANA, a potent inhibitor of influenza virus neuraminidase, inhibits not only HPF3 neuraminidase but also the receptor binding activity of HPF3 HN and thus its ability to promote attachment and fusion. We previously generated a 4-GU-DANA-resistant HPF3 virus variant (ZM1) with a markedly fusogenic plaque morphology that harbored two HN gene mutations resulting in amino acid alterations. The present study using cells that express the individual mutations of ZM1 HN shows that one of these mutations is responsible for the increases in receptor binding and neuraminidase activities as well as the diminished sensitivity of both activities to the inhibitory effect of 4-GU-DANA. To examine the hypothesis that increased receptor binding avidity underlies 4-GU-DANA resistance, parallel studies were carried out on the high-affinity HN variant virus C22 and cells expressing the C22 variant HN. This variant also exhibited reduced sensitivity to 4-GU-DANA in terms of receptor binding and infectivity but without concomitant changes in the neuraminidase activity of HN. Another high-affinity HN variant, C0, was not resistant in terms of infectivity; however, a small increase in the receptor binding activity of C0 HN and a partial resistance of this activity to 4-GU-DANA were revealed by sensitive methods that we developed. In each virus variant, one mutation in HN accounted for both increased receptor binding avidity and 4-GU-DANA resistance; the higher affinity for the receptor overcomes the inhibitory effect of 4-GU-DANA. Thus, in contrast to influenza viruses for which 4-GU-DANA escape variants include hemagglutinin mutants with decreased receptor binding avidity that promotes virion release, for HPF3, HN mutants with increased receptor binding avidity are those that can escape the growth inhibitory effect of 4-GU-DANA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号