首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5718篇
  免费   685篇
  国内免费   3篇
  2021年   79篇
  2020年   42篇
  2019年   53篇
  2018年   72篇
  2017年   79篇
  2016年   94篇
  2015年   145篇
  2014年   192篇
  2013年   276篇
  2012年   271篇
  2011年   278篇
  2010年   190篇
  2009年   155篇
  2008年   217篇
  2007年   248篇
  2006年   225篇
  2005年   211篇
  2004年   200篇
  2003年   192篇
  2002年   192篇
  2001年   137篇
  2000年   161篇
  1999年   129篇
  1998年   91篇
  1997年   69篇
  1996年   75篇
  1995年   66篇
  1994年   57篇
  1993年   59篇
  1992年   109篇
  1991年   102篇
  1990年   83篇
  1989年   87篇
  1988年   105篇
  1987年   104篇
  1986年   81篇
  1985年   82篇
  1984年   97篇
  1983年   85篇
  1982年   54篇
  1981年   67篇
  1980年   58篇
  1979年   78篇
  1978年   50篇
  1977年   45篇
  1976年   55篇
  1975年   41篇
  1974年   55篇
  1973年   43篇
  1969年   44篇
排序方式: 共有6406条查询结果,搜索用时 31 毫秒
961.
Glucose oxidase secreted by the fungus Talaromyces flavus generates, in the presence of glucose, hydrogen peroxide that is toxic to phytopathogenic fungi responsible for economically important diseases in many crops. A glucose oxidase gene from T. flavus, was modified with a carrot extensin signal peptide and fused to either a constitutive or root-specific plant promoter. T1 tobacco plants expressing the enzyme constitutively were protected against infection by the seedling pathogen Rhizoctonia solani. Constitutive expression in tobacco was associated with reduced root growth, and slow germination on culture medium, and with reduced seed set in glasshouse conditions. Several independent transformed cotton plants with a root-specific construct expressed high glucose oxidase activity in the roots, excluding the root tip. Selected T3 homozygous lines showed some protection against the root pathogen, Verticillium dahliae, but not against Fusarium oxysporum. High levels of glucose oxidase expression in cotton roots were associated with reduced height, seed set and seedling germination and reduced lateral root formation. If this gene is to be of value for crop protection against pathogens it will require precise control of its expression to remove the deleterious phenotypes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
962.
963.
A role for myosin phosphorylation in modulating normal cardiac function has long been suspected, and we hypothesized that changing the phosphorylation status of a cardiac myosin light chain might alter cardiac function in the whole animal. To test this directly, transgenic mice were created in which three potentially phosphorylatable serines in the ventricular isoform of the regulatory myosin light chain were mutated to alanines. Lines were obtained in which replacement of the endogenous species in the ventricle with the nonphosphorylatable, transgenically encoded protein was essentially complete. The mice show a spectrum of cardiovascular changes. As previously observed in skeletal muscle, Ca(2+) sensitivity of force development was dependent upon the phosphorylation status of the regulatory light chain. Structural abnormalities were detected by both gross histology and transmission electron microscopic analyses. Mature animals showed both atrial hypertrophy and dilatation. Echocardiographic analysis revealed that as a result of chamber enlargement, severe tricuspid valve insufficiency resulted in a detectable regurgitation jet. We conclude that regulated phosphorylation of the regulatory myosin light chains appears to play an important role in maintaining normal cardiac function over the lifetime of the animal.  相似文献   
964.
Recognition sequence of a restriction enzyme   总被引:27,自引:0,他引:27  
  相似文献   
965.
This study investigated the applicability of using surface electromyography (EMG) as a tool for differentiating between persons suffering from lateral tennis elbow and the healthy age-matched adults. Temporal muscle activation patterns of the tennis elbow group were evaluated to determine if they varied between subject groups and if noted variations might be interpreted as arresting or exacerbating the injury. Sixteen subjects (Healthy Controls, n = 6; Tennis Elbow, n = 10) were tested under simulated tennis playing conditions. All subjects were males (Healthy group (CON) 38.8 +/- 13.1, Injured group (INJ) 40.8 +/- 10.8 yrs). EMG response data, temporal and spatial muscle activities, of the forearm extensors (Ext), the forearm flexors (Flex) and the triceps (Tri) were recorded for each subject during a single test session using all combinations of three different velocities on three different racket head impact locations. Data were collected at a frequency of 1000 Hz. Statistical analysis was performed using a 2 x 3 x 3 (Health status x Impact velocity x Impact location) ANOVA with repeated measures. Results indicated statistically significant differences (p < 0.05) between the CON and INJ subject groups for the response variables associated with forearm extensor muscle activation. During simulated play, the INJ group employed an earlier, longer, and greater activation of Ext than the CON group, such changes may be considered detrimental to the healing process. These results support the use of surface EMG to quantify differences in muscle activation strategies employed by individuals suffering from soft tissue muscle microtrauma injuries and healthy controls.  相似文献   
966.
The question is addressed of how maximal structural NOE data on double labelled proteins can be acquired with a minimal set of NOESY experiments. Two 3D-NOESY spectra are reported which, in concert with other commonly used spectra, provide a convenient strategy for NOE assignment. The 3D CNH-NOESY and 3D NCH-NOESY provide NOE connectivities between amide protons and carbon-bound protons and constitute orthogonal heteronuclear filters which eliminate diagonal signals, considerably improving spectral quality. Two different heteronuclear chemical shift dimensions are recorded in the spectra, thus exploiting the extra dispersion of the heteronucleus and considerably simplifying assignment.  相似文献   
967.
968.
Type I DNA restriction enzymes are large, molecular machines possessing DNA methyltransferase, ATPase, DNA translocase and endonuclease activities. The ATPase, DNA translocase and endonuclease activities are specified by the restriction (R) subunit of the enzyme. We demonstrate that the R subunit of the Eco KI type I restriction enzyme comprises several different functional domains. An N-terminal domain contains an amino acid motif identical with that forming the catalytic site in simple restriction endonucleases, and changes within this motif lead to a loss of nuclease activity and abolish the restriction reaction. The central part of the R subunit contains amino acid sequences characteristic of DNA helicases. We demonstrate, using limited proteolysis of this subunit, that the helicase motifs are contained in two domains. Secondary structure prediction of these domains suggests a structure that is the same as the catalytic domains of DNA helicases of known structure. The C-terminal region of the R subunit can be removed by elastase treatment leaving a large fragment, stable in the presence of ATP, which can no longer bind to the other subunits of Eco KI suggesting that this domain is required for protein assembly. Considering these results and previous models of the methyltransferase part of these enzymes, a structural and operational model of a type I DNA restriction enzyme is presented.  相似文献   
969.
TMPRSS13, a member of the type II transmembrane serine protease (TTSP) family, harbors four N-linked glycosylation sites in its extracellular domain. Two of the glycosylated residues are located in the scavenger receptor cysteine-rich (SRCR) protein domain, while the remaining two sites are in the catalytic serine protease (SP) domain. In this study, we examined the role of N-linked glycosylation in the proteolytic activity, autoactivation, and cellular localization of TMPRSS13. Individual and combinatory site-directed mutagenesis of the glycosylated asparagine residues indicated that glycosylation of the SP domain is critical for TMPRSS13 autoactivation and catalytic activity toward one of its protein substrates, the prostasin zymogen. Additionally, SP domain glycosylation-deficient TMPRSS13 displayed impaired trafficking of TMPRSS13 to the cell surface, which correlated with increased retention in the endoplasmic reticulum. Importantly, we showed that N-linked glycosylation was a critical determinant for subsequent phosphorylation of endogenous TMPRSS13. Taken together, we conclude that glycosylation plays an important role in regulating TMPRSS13 activation and activity, phosphorylation, and cell surface localization.  相似文献   
970.
Mutation rates vary both within and between bacterial species, and understanding what drives this variation is essential for understanding the evolutionary dynamics of bacterial populations. In this study, we investigate two factors that are predicted to influence the mutation rate: ecology and genome size. We conducted mutation accumulation experiments on eight strains of the emerging zoonotic pathogen Streptococcus suis. Natural variation within this species allows us to compare tonsil carriage and invasive disease isolates, from both more and less pathogenic populations, with a wide range of genome sizes. We find that invasive disease isolates have repeatedly evolved mutation rates that are higher than those of closely related carriage isolates, regardless of variation in genome size. Independent of this variation in overall rate, we also observe a stronger bias towards G/C to A/T mutations in isolates from more pathogenic populations, whose genomes tend to be smaller and more AT-rich. Our results suggest that ecology is a stronger correlate of mutation rate than genome size over these timescales, and that transitions to invasive disease are consistently accompanied by rapid increases in mutation rate. These results shed light on the impact that ecology can have on the adaptive potential of bacterial pathogens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号