首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   16篇
  2023年   2篇
  2020年   3篇
  2019年   7篇
  2017年   2篇
  2016年   2篇
  2015年   8篇
  2014年   8篇
  2013年   8篇
  2012年   8篇
  2011年   9篇
  2010年   4篇
  2009年   3篇
  2008年   5篇
  2007年   9篇
  2006年   4篇
  2005年   2篇
  2004年   5篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  1999年   2篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1988年   4篇
  1982年   5篇
  1980年   2篇
  1979年   2篇
  1974年   2篇
  1973年   2篇
  1971年   4篇
  1966年   3篇
  1960年   2篇
  1930年   2篇
  1927年   2篇
  1903年   4篇
  1902年   4篇
  1899年   2篇
  1898年   3篇
  1895年   2篇
  1893年   4篇
  1891年   3篇
  1888年   3篇
  1884年   1篇
  1883年   2篇
  1881年   2篇
排序方式: 共有204条查询结果,搜索用时 31 毫秒
81.
82.
Phospholipase D alpha (PLD, EC 3.1.4.4)) is a key enzyme involved in membrane deterioration that occurs during fruit ripening and senescence. The biochemical and molecular characteristics of PLD was studied in strawberry (Fragaria ananassa Duch) fruits, which are non-climacteric fruits. PLD activity was primarily associated with the mitochondrial and microsomal fractions and showed increased activity during development. Optimal pH levels of activity were observed at 5.5 and 6.5 for mitochondrial PLD and at 5 and 7 for microsomal PLD. Calcium enhanced microsomal PLD activity at 1-40 microM levels. PLD activity followed Michaelis-Menten kinetics. Lineweaver-Burk analysis gave Km values in the range of 114 and 277 microM using dipalmitoylphosphatidylcholine (DPPC) as substrate for mitochondrial and microsomal PLD, respectively. The Vmax value for the microsomal PLD was nearly 12-fold higher than that of mitochondrial PLD. A 2874 bp full-length cDNA for PLD alpha was amplified from strawberry fruit mRNA using RT-PCR and 5'- and 3'-RACE encoding an 810 amino acid-polypeptide. The predicted strawberry PLD sequence showed the characteristic C2 domain and the phospholipase domains conferring calcium sensitivity and the enzyme activity, respectively. The strawberry PLD alpha showed a high degree of similarity to other PLD alphas from plants. The implications of PLD regulation during ripening of fruits are discussed.  相似文献   
83.
Resumé Les auteurs ont étudié la composition chimique (N, substances humiques, lignine) de copeaux de bois blanc exposés à l'air libre depuis 2 à 10 ans, ainsi que leur type de peuplement fongique. En l'absence de lignivore, le pH, les taux de lignine et d'N s'élèvent et il se forme des quantités modérées d'humus à forte capacité d'échange. Dans le cas contraire, on voit apparaître, en abondance, des substances humiques peu condensées et la matière organique subit une évolution rappelant celle du mor.Avec la collaboration technique de Melle. M. Clet.Kononova, dans sa monographie5, signale de Troussov (1916) une étude que nous n'avons pas eu en mains.  相似文献   
84.
Most natural populations of Drosophila melanogaster are polymorphic for two major electrophoretic variants at the esterase-6 locus. The frequency of the EST 6F allozyme is greatest in populations in warmer latitudes, whereas the EST 6S allozyme is predominant in colder latitudes. Latitudinal clines in electromorph frequencies are found on three continents. Purified preparations of the allozymes have been characterized for their pH optimum, substrate specificity, organophosphate inhibition, alcohol activation, thermal stability, and kinetic parameters. These and previous analyses of the EST 6 allozymes reveal that the two variants have differences in their physical and kinetic properties that may provide a basis for the selective maintenance of the polymorphisms and an explanation of the clinal variation observed in natural populations.   相似文献   
85.
86.
87.
88.
The XI International Rotifer Symposium was held during 11–18 March, 2006 at the National Autonomous University of Mexico Campus Iztacala located at the North Mexico City (Mexico). These triennial international meetings, first organized in Austria by Late Ruttner-Kolisko in September 1976, are gradually becoming the focal point of discussion and collaboration from rotifer workers across the world. The present XI symposium was attended by 125 participants from 20 nations. During this meeting, different themes of rotifer research from morphology to molecular biology were considered. In addition, there were four invited lectures and four workshops covering different themes of the symposium. During the last 30 years, rotifer research has witnessed gradual shift from the conventional morphological taxonomy to molecular and evolutionary systematics. While the basic rotifer ecological studies continue today, applied areas such as ecotoxicology and aquaculture have taken key roles in the recent meetings. The international rotifer meetings provide ample opportunities not only for exchange of ideas and recent research, but also for material and in establishing inter-personal relationships. Over the last 30 years, the number of participants attending the rotifer meetings has increased.  相似文献   
89.
With their resistance to genotoxic and anti-proliferative drugs and potential to grow tumors and metastases from very few cells, cancer stem or tumor-initiating cells (TICs) are a severe limitation for the treatment of cancer by conventional therapies. Here, we explored whether human T cells that are redirected via an EpCAM/CD3-bispecific antibody called MT110 can lyse colorectal TICs and prevent tumor growth from TICs. MT110 recognizes EpCAM, a cell adhesion molecule expressed on TICs from diverse human carcinoma, which was recently shown to promote tumor growth through engagement of elements of the wnt pathway. MT110 was highly potent in mediating complete redirected lysis of KRAS-, PI3 kinase- and BRAF-mutated colorectal TICs, as demonstrated in a soft agar assay. In immunodeficient mice, MT110 prevented growth of tumors from a 5,000-fold excess of a minimally tumorigenic TIC dose. T cells engaged by MT110 may provide a potent therapeutic means to eradicate TICs and bulk tumor cells derived thereof.  相似文献   
90.
The important role of the cytoskeletal scaffold is increasingly recognized in host-pathogen interactions. The cytoskeleton potentially functions as a weapon for both the plants defending themselves against fungal or oomycete parasites, and for the pathogens trying to overcome the resisting barrier of the plants. This concept, however, had not been investigated in marine algae so far. We are opening this scientific chapter with our study on the functional implications of the cytoskeleton in 3 filamentous brown algal species infected by the marine oomycete Eurychasma dicksonii. Our observations suggest that the cytoskeleton is involved in host defense responses and in fundamental developmental stages of E. dicksonii in its algal host.Oomycetes are important plant and animal pathogens and are the cause of significant crop losses every year. Hence, a plethora of studies with different cultivated and model plant species investigate the diversity of parasite infection pathways and host defense responses.1 However, little information is available on the interactions between algae and marine oomycetes, despite the epidemic outbreaks reported2 and the huge impact on intensive algal aquaculture.3Eurychasma dicksonii is a biotrophic, intracellular marine oomycete, capable to infect at least 45 species of brown seaweeds in laboratory cultures.4 Molecular data reveal that E. dicksonii has a basal phylogenetic position in the oomycete lineage.5,6 The basic stages of the infection are known: the attachment of the parasite spore to the host cell wall, the penetration of its cytoplasm into the host cell, the formation of a multinucleated, unwalled thallus, and zoosporogenesis.6 Hitherto, though, there was no knowledge about the role of cytoskeleton in the context of infection, which stimulated our research.In land plants, reorganization of the cytoskeleton is part of the reaction to infection by fungal pathogens. The rearrangement of the cytoplasm and the relocation of the nuclei and other organelles are accompanied by rapid rearrangements of the cytoskeletal elements.7 The plant cytoskeleton shows an extreme plasticity in order to serve the intracellular realignment.At the same time, this indicates that the plant cytoskeleton could be the parasite’s target by producing anti-cytoskeletal compounds in an effort to overcome plant resistance, a mechanism known in several fungal and oomycete pathogens of higher plants.8,9Consequently, the changes in microtubule (MT) organization are associated with both the plant defense and/or susceptibility toward oomycetes, respectively.10 Therefore, our research on the organization and role of cytoskeleton in the host and the parasite sheds some light into the enormous variability in the specificity of the recognition, defense, and infection mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号