首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1350篇
  免费   95篇
  2023年   7篇
  2022年   15篇
  2021年   14篇
  2020年   13篇
  2019年   18篇
  2018年   19篇
  2017年   14篇
  2016年   35篇
  2015年   61篇
  2014年   60篇
  2013年   105篇
  2012年   123篇
  2011年   77篇
  2010年   46篇
  2009年   39篇
  2008年   91篇
  2007年   80篇
  2006年   77篇
  2005年   61篇
  2004年   56篇
  2003年   72篇
  2002年   62篇
  2001年   11篇
  2000年   19篇
  1999年   13篇
  1998年   20篇
  1997年   18篇
  1996年   16篇
  1995年   10篇
  1994年   8篇
  1993年   12篇
  1992年   17篇
  1990年   4篇
  1989年   6篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1983年   4篇
  1982年   7篇
  1981年   5篇
  1980年   4篇
  1979年   9篇
  1977年   6篇
  1974年   6篇
  1973年   4篇
  1971年   5篇
  1969年   4篇
  1966年   4篇
  1965年   4篇
  1947年   4篇
排序方式: 共有1445条查询结果,搜索用时 17 毫秒
981.
As part of our program directed towards the discovery of new cancer chemopreventive agents from plants, the EtOAc-soluble extract of the stems of M. pomiferus was found to inhibit the enzyme cyclooxygenase-2 (COX-2). Bioassay-directed fractionation of this extract led to the isolation of two dibenzylbutyrolactone lignans, (8R,8'R)-3'-O-demethyl-5-hydroxymatairesinol (1) and (8R,8'R)-3'-O-demethyl-5-methoxymatairesinol (2), as well as seven known compounds, (-)-5'-methoxyyatein (3), blumenol A, (-)-deoxypodophyllotoxin (anthricin), (-)-deoxypodorhizone, 2,6-dimethoxyhydroquinone, 4-hydroxybenzaldehyde, and beta-sitosterol glucoside. The structures of compounds 1 and 2 were determined using spectroscopic data (1D and 2D NMR, and HREIMS), and the 8R and 8'R absolute stereochemistry was established for both 1 and 2 on the basis of their CD spectra. All isolates obtained in the present study were evaluated for their inhibitory effects with both COX-1 and -2. Of these, only 5'-methoxyyatein (3) showed weak activity against COX-2, while all other compounds isolated were inactive. The COX-2 inhibitory activity of the EtOAc extract was also traced to the presence of several common fatty acids by LC-MS.  相似文献   
982.
The csgD gene of Escherichia coli is required for the expression of curli fibres, surface fibres that are important for biofilm formation and infection. Previously, we demonstrated that expression of CsgD from a multicopy plasmid increased expression of the glyA gene, which codes for serine hydroxymethyltransferase. We show here that this activation requires the participation of both known regulatory proteins, MetR and PurR. The adjacent divergently transcribed gene hmp was weakly induced by CsgD, but its induction did not require MetR or PurR. The effect of CsgD on the expression of several pur and met genes was also tested.  相似文献   
983.
Bradykinin, RPPGFSPFG, has been reported to be an inhibitor of thrombin's roles in blood clotting, platelet activation, and cellular permeability. The exact target, magnitude, and type of inhibition occurring are not well characterized. Based on the individual kinetic parameters calculated here, bradykinin is classified as a weak competitive inhibitor against hydrolysis of S-2238 and of a PAR4-like peptide. The K(m) values increased twofold in the presence of bradykinin, whereas the k(cat) values remained constant. The K(i) values ranged from 170 to 326 microM. Other biochemical studies indicated that bradykinin inhibits release of fibrinopeptide A from fibrinogen. Furthermore, bradykinin hindered the time required for fibrin clot formation. The weak inhibitions observed in vitro suggest that the direct effects of bradykinin on the thrombin active site become significant only at high concentrations, levels that may be difficult to achieve physiologically. Clearly, bradykinin can target thrombin but whether this direct interaction can be achieved in vivo and is sufficient to elicit a response without contributions from other cofactors requires further investigation.  相似文献   
984.
HasA(SM) secreted by the Gram-negative bacterium Serratia marcescens belongs to the hemophore family. Its role is to take up heme from host heme carriers and to shuttle it to specific receptors. Heme is linked to the HasA(SM) protein by an unusual axial ligand pair: His32 and Tyr75. The nucleophilic nature of the tyrosine is enhanced by the hydrogen bonding of the tyrosinate to a neighboring histidine in the binding site: His83. We used isothermal titration microcalorimetry to examine the thermodynamics of heme binding to HasA(SM) and showed that binding is strongly exothermic and enthalpy driven: DeltaH = -105.4 kJ x mol(-1) and TDeltaS = -44.3 kJ x mol(-1). We used displacement experiments to determine the affinity constant of HasA(SM) for heme (K(a) = 5.3 x 10(10) M(-1)). This is the first time that this has been reported for a hemophore. We also analyzed the thermodynamics of the interaction between heme and a panel of single, double, and triple mutants of the two axial ligands His32 and Tyr75 and of His83 to assess the implication of each of these three residues in heme binding. We demonstrated that, in contrast to His32, His83 is essential for the binding of heme to HasA(SM), even though it is not directly coordinated to iron, and that the Tyr75/His83 pair plays a key role in the interaction.  相似文献   
985.
The N-terminal end of Bax contains a mitochondrial-targeting signal   总被引:9,自引:0,他引:9  
The translocation of Bax alpha, a pro-apoptotic member of the BCL-2 family from the cytosol to mitochondria, is a central event of the apoptotic program. We report here that the N-terminal (NT) end of Bax alpha, which contains its first alpha helix (Eta alpha 1), is a functional mitochondrial-addressing signal both in mammals and in yeast. Similar results were obtained with a newly described variant of Bax called Bax psi, which lacks the first 20 amino acids of Bax alpha and is constitutively associated with mitochondria. Deletion of Eta alpha 1 impairs the binding of Bax psi to mitochondria, whereas a fusion of the N terminus of Bax alpha, which contains Eta alpha 1 with a cytosolic protein, results in the binding of the chimeric proteins to mitochondria both in a cell-free assay and in vitro. More importantly, the mitochondria-bound chimeric proteins inhibit the interaction of Bax psi with mitochondria as well as Bax-apoptogenic properties. The mutations of the Eta alpha 1, which inhibit Bax alpha and Bax psi translocation to mitochondria, also block the subsequent activation of the execution phase of apoptosis. Conversely, a deletion of the C terminus does not appear to influence Bax alpha and Bax psi mitochondrial addressing. Taken together, our results suggest that Bax is targeted to mitochondria by its NT and thus through a pathway that is unique for a member of the BCL-2 family.  相似文献   
986.
The transport activity of the Na,K-ATPase (a 3 Na+ for 2 K+ ion exchange) is electrogenic, whereas the closely related gastric and non-gastric H,K-ATPases perform electroneutral cation exchange. We have studied the role of a highly conserved serine residue in the fifth transmembrane segment of the Na,K-ATPase, which is replaced with a lysine in all known H,K-ATPases. Ouabain-sensitive 86Rb uptake and K+-activated currents were measured in Xenopus oocytes expressing the Bufo bladder H,K-ATPase or the Bufo Na,K-ATPase in which these residues, Lys800 and Ser782, respectively, were mutated. Mutants K800A and K800E of the H,K-ATPase showed K+-stimulated and ouabain-sensitive electrogenic transport. In contrast, when the positive charge was conserved (K800R), no K+-induced outward current could be measured, even though rubidium transport activity was present. Conversely, the S782R mutant of the Na,K-ATPase had non-electrogenic transport activity, whereas the S782A mutant was electrogenic. The K800S mutant of the H,K-ATPase had a more complex behavior, with electrogenic transport only in the absence of extracellular Na+. Thus, a single positively charged residue in the fifth transmembrane segment of the alpha-subunit can determine the electrogenicity and therefore the stoichiometry of cation transport by these ATPases.  相似文献   
987.
Aside from its mechanical barrier function, bronchial epithelium plays an important role both in the host defense and in the pathogenesis of inflammatory airway disorders. To investigate its role in lung defense, the effect of a bacterial cell wall protein, the outer membrane protein A from Klebsiella pneumoniae (kpOmpA) on bronchial epithelial cells (BEC) was evaluated on adhesion molecule expression and cytokine production. Moreover, the potential implication of this mechanism in kpOmpA-induced lung inflammation was also determined. Our in vitro studies demonstrated that kpOmpA strongly bound to BEAS-2B cells, a human BEC line, and to BEC primary cultures, resulting in NF-kappaB signaling pathway activation. Exposure to kpOmpA increased ICAM-1 mRNA and cell surface expression, as well as the secretion of IL-6, CXC chemokine ligand (CXCL)1, CXCL8, C-C chemokine ligand 2, CXCL10 by BEAS-2B cells, and BEC primary cultures (p < 0.005). We analyzed in vivo the consequences of intratracheal injection of kpOmpA to BALB/c mice. In kpOmpA-treated mice, a transient neutrophilia (with a maximum at 24 h) was observed in bronchoalveolar lavage and lung sections. In vivo kpOmpA priming induced bronchial epithelium activation as evaluated by ICAM-1 and CXCL1 expression, associated with the secretion of CXCL1 and CXCL5 in bronchoalveolar lavage fluids. In the lung, an increased level of the IL-6, CXCL1, CXCL5, CXCL10 mRNA was observed with a maximum at 6 h. These data showed that kpOmpA is involved in host defense mechanism by its ability to activate not only APC but also BEC, resulting in a lung neutrophilia.  相似文献   
988.
Ubiquitin has emerged as an important regulator of protein stability and function in organisms ranging from yeast to mammals. The ability to detect in situ changes in protein ubiquitination without perturbing the physiological environment of cells would be a major step forward in understanding the ubiquitination process and its consequences. Here, we describe a new method to study this dynamic post-translational modification in intact human embryonic kidney cells. Using bioluminescence resonance energy transfer (BRET), we measured the ubiquitination of beta-arrestin 2, a regulatory protein implicated in the modulation of G protein-coupled receptors. In addition to allowing the detection of basal and GPCR-regulated ubiquitination of beta-arrestin 2 in living cells, real-time BRET measurements permitted the recording of distinct ubiquitination kinetics that are dictated by the identity of the activated receptor. The ubiquitination BRET assay should prove to be a useful tool for studying the dynamic ubiquitination of proteins and for understanding which cellular functions are regulated by this post-translational event.  相似文献   
989.
990.
Protein kinase CK2 is a ubiquitous protein kinase implicated in proliferation and cell survival. Its regulatory beta subunit, CK2beta, which is encoded by a single gene in mammals, has been suspected of regulating other protein kinases. In this work, we show that knockout of the CK2beta gene in mice leads to postimplantation lethality. Mutant embryos were reduced in size at embryonic day 6.5 (E6.5). They did not exhibit signs of apoptosis but did show reduced cell proliferation. Mutant embryos were resorbed at E7.5. In vitro, CK2beta(-/-) morula development stopped after the blastocyst stage. Attempts to generate homozygous embryonic stem (ES) cells failed. By using a conditional knockout approach, we show that lack of CK2beta is deleterious for mouse ES cells and primary embryonic fibroblasts. This is in contrast to what occurs with yeast cells, which can survive without functional CK2beta. Thus, our study demonstrates that in mammals, CK2beta is essential for viability at the cellular level, possibly because it acquired new functions during evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号