首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1156篇
  免费   42篇
  1198篇
  2023年   2篇
  2022年   9篇
  2021年   12篇
  2020年   7篇
  2019年   5篇
  2018年   18篇
  2017年   10篇
  2016年   19篇
  2015年   37篇
  2014年   42篇
  2013年   69篇
  2012年   88篇
  2011年   64篇
  2010年   37篇
  2009年   37篇
  2008年   82篇
  2007年   65篇
  2006年   62篇
  2005年   48篇
  2004年   62篇
  2003年   63篇
  2002年   64篇
  2001年   20篇
  2000年   26篇
  1999年   20篇
  1998年   19篇
  1997年   15篇
  1996年   11篇
  1995年   20篇
  1994年   5篇
  1992年   11篇
  1991年   15篇
  1990年   11篇
  1989年   12篇
  1988年   7篇
  1987年   13篇
  1986年   16篇
  1985年   7篇
  1984年   10篇
  1983年   11篇
  1982年   12篇
  1981年   6篇
  1978年   5篇
  1977年   4篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1967年   1篇
  1966年   4篇
排序方式: 共有1198条查询结果,搜索用时 9 毫秒
31.
Abstract: In cultured bovine adrenal medullary cells, stimulation of nicotinic receptors by carbachol evoked the Ca2+-dependent exocytotic cosecretion of proadrenomedullin N-terminal 20 peptide (PAMP) (EC50 = 50.1 µ M ) and catecholamines (EC50 = 63.0 µ M ), with the molar ratio of PAMP/catecholamines secreted being equal to the ratio in the cells. Addition of PAMP[1–20]NH2 inhibited carbachol-induced 22Na+ influx via nicotinic receptors (IC50 = 2.5 µ M ) in a noncompetitive manner and thereby reduced carbachol-induced 45Ca2+ influx via voltage-dependent Ca2+ channels (IC50 = 1.0 µ M ) and catecholamine secretion (IC50 = 1.6 µ M ). It did not alter high K+-induced 45Ca2+ influx via voltage-dependent Ca2+ channels or veratridine-induced 22Na+ influx via voltage-dependent Na+ channels. PAMP seems to be a novel antinicotinic peptide cosecreted with catecholamines by a Ca2+-dependent exocytosis in response to nicotinic receptor stimulation.  相似文献   
32.
33.
Exudative age-related macular degeneration, characterized by choroidal neovascularization (CNV), is a major cause of visual loss. In this study, we examined the distribution of the polyion complex (PIC) micelle encapsulating FITC-P(Lys) in blood and in experimental CNV in rats to investigate whether PIC micelle can be used for treatment of CNV. We demonstrate that PIC micelle has long-circulating characteristics, accumulating to the CNV lesions and is retained in the lesion for as long as 168 h after intravenous administration. These results raise the possibility that PIC micelles can be used for achieving effective drug targeting to CNV.  相似文献   
34.
γδT cells play a regulatory role in both primary and metastatic tumor growth in humans. The mechanisms responsible for the activation and proliferation of circulating γδT cells should be fully understood prior to their adoptive transfer to cancer patients. We have examined in vitro functional effects of interleukin-15 (IL-15) on highly purified γδT cells isolated from glioblastoma patients. γδT cells constitutively express the heterotrimeric IL-2 receptor (IL-2R) αβγ, but the levels of IL-2Rβ or γ expression were not increased by incubation with saturating amounts of IL-15. IL-15 was shown to induce a maximal γδT cell proliferation, although at much higher concentrations (at least 2000 U/ml) than IL-2 (100 U/ml). Submaximal concentrations of IL-15 plus low concentrations of IL-2 produced an additive proliferative response. In contrast to the IL-2-induced response, this activity was completely or partially abrogated by anti-IL-2Rβ, or anti-IL-2Rγ antibodies, but not by anti-IL-2Rα antibodies. Incubation of γδT cells in the presence of IL-15 resulted not only in the appearance of NK and LAK activity, but also in specific autologous tumor cell killing activity, an additive effect being seen with IL-15 and IL-2. This IL-15-induced tumor-specific activity could be significantly blocked by anti-IL-2Rγ and anti-IL-2R-β mAb, but not by anti-IL-2Rα mAb. Thus, in contrast to IL-2, IL-15 activates tumor-specific γδT cells through the components of IL-2Rβ and IL-2Rγ, but not IL-2Rα. These enhanced in vitro tumor-specific and proliferative responses of γδT cells seen with IL-15 suggest a rational adjuvant imunotherapeutic use of γδT cells in cancer patients. Received: 23 January 1998 / Accepted: 20 May 1998  相似文献   
35.
The angiotensin I-converting enzyme (ACE) converts the decapeptide angiotensin I (Ang I) into angiotensin II by releasing the C-terminal dipeptide. A novel approach combining enzymatic and electron paramagnetic resonance (EPR) studies was developed to determine the enzyme effect on Ang I containing the paramagnetic 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) at positions 1, 3, 8, and 9. Biological assays indicated that TOAC(1)-Ang I maintained partly the Ang I activity, and that only this derivative and the TOAC(3)-Ang I were cleaved by ACE. Quenching of Tyr(4) fluorescence by TOAC decreased with increasing distance between both residues, suggesting an overall partially extended structure. However, the local bend known to be imposed by the substituted diglycine TOAC is probably responsible for steric hindrance, not allowing the analogues containing TOAC at positions 8 and 9 to act as substrates. In some cases, although substrates and products differ by only two residues, the difference between their EPR spectral lineshapes allows monitoring the enzymatic reaction as a function of time.  相似文献   
36.
Active calcium transport in intestine is essential for serum calcium homeostasis as well as for bone formation. It is well recognized that vitamin D is a major, if not sole, stimulator of intestinal calcium transport activity in mammals. Besides vitamin D, endogenous glucose 1-phosphate (G1P) affects calcium transport activity in some microorganisms. In this study, we investigated whether G1P affects intestinal calcium transport activity in mammals as well. Of several glycolytic intermediates, G1P was the sole sugar compound in stimulating intestinal calcium uptake in Caco-2 cells. G1P stimulated net calcium influx and expression of calbindin D9K protein in rat intestine, through an active transport mechanism. Calcium uptake in G1P-supplemented rats was greater than that in the control rats fed a diet containing adequate vitamin D3. Bone mineral density (BMD) of aged rat femoral metaphysis and diaphysis was also increased by feeding the G1P diet. G1P did not affect serum levels of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] at all. These results suggest that exogenously applied G1P stimulates active transport of calcium in intestine, independent of vitamin D, leading to an increase of BMD.  相似文献   
37.
Catechins have a great variety of biological actions. We evaluated the potential benefits of catechin ingestion on muscle contractile properties, oxidative stress, and inflammation following downhill running, which is a typical eccentric exercise, in senescence-accelerated prone mice (SAMP). Downhill running (13 m/min for 60 min; 16° decline) induced a greater decrease in the contractile force of soleus muscle and in Ca(2+)-ATPase activity in SAMP1 compared with the senescence-resistant mice (SAMR1). Moreover, compared with SAMR1, SAMP1 showed greater downhill running-induced increases in plasma CPK and LDH activity, malondialdehyde, and carbonylated protein as markers of oxidative stress; and in protein and mRNA expression levels of the inflammatory mediators such as tumor necrosis factor-α and monocyte chemoattractant protein-1 in muscle. SAMP1 exhibited aging-associated vulnerability to oxidative stress and inflammation in muscle induced by downhill running. Long-term (8 wk) catechin ingestion significantly attenuated the downhill running-induced decrease in muscle force and the increased inflammatory mediators in both plasma and gastrocnemius muscle. Furthermore, catechins significantly inhibited the increase in oxidative stress markers immediately after downhill running, accompanied by an increase in glutathione reductase activity. These findings suggest that long-term catechin ingestion attenuates the aging-associated loss of force production, oxidative stress, and inflammation in muscle after exercise.  相似文献   
38.
Cholinergic neurons in the CNS are involved in synaptic plasticity and cognition. Both muscarinic and nicotinic acetylcholine receptors (nAChRs) influence plasticity and cognitive function. The mechanism underlying nAChR‐induced plasticity, however, has remained elusive. Here, we demonstrate morphological changes in dendritic spines following activation of α4β2* nAChRs, which are expressed on glutamatergic pre‐synaptic termini of cultured hippocampal neurons. Exposure of the neurons to nicotine resulted in a lateral enlargement of spine heads. This was abolished by dihydro‐β‐erythroidine, an antagonist of α4β2* nAChRs, but not by α‐bungarotoxin, an antagonist of α7 nAChRs. Tetanus toxin or a mixture of 2‐amino‐5‐phosphonovaleric acid and 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione, antagonists of NMDA‐ and AMPA‐type glutamate receptors, blocked the nicotine‐induced spine remodeling. In addition, nicotine exerted full spine‐enlarging response in the post‐synaptic neuron whose β2 nAChR expression was knocked down. Finally, pre‐treatment with nicotine enhanced the Ca2+‐response of the neurons to glutamate. These data suggest that nicotine influences the activity of glutamatergic neurotransmission through the activation of pre‐synaptic α4β2 nAChRs, resulting in the modulation of spinal architecture and responsiveness. The present findings may represent one of the cellular mechanisms underlying cholinergic tuning of brain function.

  相似文献   

39.
40.
The P1B-type heavy metal ATPases (HMAs) are diverse in terms of tissue distribution, subcellular localization, and metal specificity. Functional studies of HMAs have shown that these transporters can be divided into two subgroups based on their metal-substrate specificity: a copper (Cu)/silver (Ag) group and a zinc (Zn)/cobalt (Co)/cadmium (Cd)/lead (Pb) group. Studies on Arabidopsis thaliana and metal hyperaccumulator plants indicate that HMAs play an important role in the translocation or detoxification of Zn and Cd in plants. Rice possesses nine HMA genes, of which OsHMA1–OsHMA3 belong to the Zn/Co/Cd/Pb subgroup. OsHMA2 plays an important role in root-to-shoot translocation of Zn and Cd, and participates in Zn and Cd transport to developing seeds in rice. OsHMA3 transports Cd and plays a role in the sequestration of Cd into vacuoles in root cells. Modification of the expression of these genes might be an effective approach for reducing the Cd concentration in rice grains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号