首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   355篇
  免费   13篇
  2022年   2篇
  2021年   2篇
  2018年   9篇
  2017年   3篇
  2016年   7篇
  2015年   11篇
  2014年   10篇
  2013年   18篇
  2012年   29篇
  2011年   15篇
  2010年   9篇
  2009年   8篇
  2008年   17篇
  2007年   16篇
  2006年   16篇
  2005年   10篇
  2004年   12篇
  2003年   15篇
  2002年   15篇
  2001年   14篇
  2000年   20篇
  1999年   12篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   6篇
  1991年   10篇
  1990年   8篇
  1989年   7篇
  1988年   5篇
  1987年   6篇
  1986年   10篇
  1985年   2篇
  1984年   5篇
  1983年   2篇
  1981年   2篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1966年   4篇
排序方式: 共有368条查询结果,搜索用时 31 毫秒
71.
To verify the aldosterone amplifying action of 19-hydroxyandrostenedione (19-OH-AD), we investigated [3H]aldosterone and [3H]19-OH-AD binding to type I (mineralocorticoid) receptor in the renal cytosol of adrenalectomized and ovariectomized rat, and human mononuclear leucocytes (MNL). In the [3H]aldosterone binding study, the cytosol was incubated with [3H]aldosterone and 200-fold RU28362 (11 beta,17 beta-dihydroxy-6-methyl,17 alpha-(1-propynyl)-androsta-1,4,6- trien-3-one), a pure glucocorticoid, with or without 19-OH-AD. Scatchard plots of [3H]aldosterone binding to cytosol with 0.2 or 20 nM 19-OH-AD or without 19-OH-AD were linear. Dissociation constants (Kd) and maximum bindings (Bmax) without 19-OH-AD, and with 0.2 and 20 nM 19-OH-AD were: 0.71 +/- 0.03 nM and 23.0 +/- 3.4 fmol/mg protein (mean +/- SD, n = 3), 0.72 +/- 0.05 nM and 23.1 +/- 2.3 fmol/mg protein (n = 3), and 0.77 +/- 0.04 nM and 22.9 +/- 4.8 fmol/mg protein (n = 3), respectively. 19-OH-AD did not significantly change the Kd and Bmax of [3H]aldosterone binding. A high concentration of 19-OH-AD slightly displaced 0.2 or 5 nM [3H]aldosterone bound to cytosol. In human MNL, Scatchard plots of [3H]aldosterone binding with both 0.2 and 20 nM 19-OH-AD and without 19-OH-AD were linear. Kd and Bmax were, respectively, 1.00 nM and 780 sites/cell in the absence of 19-OH-AD, and 1.07 nM and 774 sites/cell in the presence of 0.2 nM 19-OH-AD. Without 19-OH-AD they were, respectively, 0.95 nM and 551 sites/cell, and 1.10 nM and 560 sites/cell with 20 nM 19-OH-AD. A high concentration of 19-OH-AD slightly displaced 0.2 or 5 nM of [3H]aldosterone bound to MNL. In both tissues, there was no obvious specific binding of [3H]19-OH-AD within the range of 1-60 nM. The above results suggest that the amplifying effect of 19-OH-AD on aldosterone mineralocorticoid action may not occur at the binding site of aldosterone to type I receptor, and that 19-OH-AD itself may not have any direct or indirect mineralocorticoid actions on the steroid receptor-mediated process in the rat kidney and human MNL.  相似文献   
72.
Production of a cachexia-inducing factor(s) by the SEKI melanoma cell line, established from a human melanoma, has been well documented. Conditioned medium from cultures of this melanoma cell line contains a factor(s) that inhibits the activity of lipoprotein lipase (LPL) in fully differentiated 3T3-L1 adipocytes. The mode of inhibition of this enzyme by the factor, i.e. its dose-dependency and time course, is very similar to that of LPL-inhibition by a macrophage-derived cachexia-inducing factor, cachectin/tumor necrosis factor (cachectin/TNF). However, the conditioned medium of SEKI melanoma cells does not contain any immuno-reactive substances reactive in enzyme-linked immunosorbent assay (ELISA) with anti-cachectin/TNF antibody, or with anti-interleukin 1 alpha or beta antibodies. This LPL-suppression factor present in the conditioned medium seems to be a peptide because of its heat-lability and apparent molecular weight of more than 25,000. The conditioned media from cultures of four other different cell lines were found to show no significant suppression of LPL activity. These results imply that SEKI melanoma cells produce a cachexia-inducing factor(s) similar to cachectin/TNF but that the molecule involved is different.  相似文献   
73.
In bacterial membranes and plant, fungus and protist mitochondria, NADH dehydrogenase (NDH-II) serves as an alternative NADH : quinone reductase, a non-proton-pumping single-subunit enzyme bound to the membrane surface. Because NDH-II is absent in mammalian mitochondria, it is a promising target for new antibiotics. However, inhibitors for NDH-II are rare and unspecific. Taking advantage of the simple organization of the respiratory chain in Gluconobacter oxydans , we carried out screening of natural compounds and identified scopafungin and gramicidin S as inhibitors for G. oxydans NDH-II. Further, we examined their effects on Mycobacterium smegmatis and Plasmodium yoelii NDH-II as model pathogen enzymes.  相似文献   
74.
75.
Sleep and Biological Rhythms - The prevalence of sleep-disordered breathing (SDB) is reportedly very high. Among SDBs, the incidence of obstructive sleep apnea (OSA) is higher than previously...  相似文献   
76.
77.
Myelodysplastic syndrome (MDS) is characterized by dysplastic and ineffective hematopoiesis, peripheral blood cytopenias, and a risk of leukemic transformation. Most MDS patients eventually require red blood cell (RBC) transfusions for anemia and consequently develop iron overload. Excess free iron in cells catalyzes generation of reactive oxygen species that cause oxidative stress, including oxidative DNA damage. However, it is uncertain how iron-mediated oxidative stress affects the pathophysiology of MDS. This study included MDS patients who visited our university hospital and affiliated hospitals (n=43). Among them, 13 patients received iron chelation therapy when their serum ferritin (SF) level was greater than 1000ng/mL or they required more than 20 RBC transfusions (or 100mL/kg of RBC). We prospectively analyzed 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in peripheral blood mononuclear cells (PBMC) obtained from MDS patients before and after iron chelator, deferasirox, administration. We showed that the 8-OHdG levels in MDS patients were significantly higher than those in healthy volunteers and were positively correlated with SF and chromosomal abnormalities. Importantly, the 8-OHdG levels in PBMC of MDS patients significantly decreased after deferasirox administration, suggesting that iron chelation reduced oxidative DNA damage. Thus, excess iron could contribute to the pathophysiology of MDS and iron chelation therapy could improve the oxidative DNA damage in MDS patients.  相似文献   
78.
A series of polyphenols known as catechins are abundant in green tea, which is consumed mainly in Asian countries. The effects of catechin-rich green tea extract (GTE) on running endurance and energy metabolism during exercise in BALB/c mice were investigated. Mice were divided into four groups: nonexercise control, exercise control (Ex-cont), exercise+0.2% GTE, and exercise+0.5% GTE groups. Treadmill running time to exhaustion, plasma biochemical parameters, skeletal muscle glycogen content, beta-oxidation activity, and malonyl-CoA content immediately after exercise were measured at 8-10 wk after the initiation of the experiment. Oxygen consumption and respiratory exchange ratio were measured using indirect calorimetry. Running times to exhaustion in mice fed 0.5% GTE were 30% higher than in Ex-cont mice and were accompanied by a lower respiratory exchange ratio, higher muscle beta-oxidation activity, and lower malonyl-CoA content. In addition, muscle glycogen content was high in the GTE group compared with the Ex-cont group. Plasma lactate concentrations in mice fed GTE were significantly lower after exercise, concomitant with an increase in free fatty acid concentrations. Catechins, which are the main constituents of GTE, did not show significant effects on peroxisome proliferator-activated receptor-alpha or delta-dependent luciferase activities. These results suggest that the endurance-improving effects of GTE were mediated, at least partly, by increased metabolic capacity and utilization of fatty acid as a source of energy in skeletal muscle during exercise.  相似文献   
79.
80.
Keratan sulfate (KS) is a glycosaminoglycan composed of repeating disaccharide units with sulfate residues at the C6 positions of galactose and N-acetylglucosamine (GlcNAc). The N-acetylglucosamine 6-O-sulfotransferase(s) (GlcNAc6ST) involved in the synthesis of KS in the central nervous system (CNS) has long been unidentified. Here, we report that a deficiency of GlcNAc6ST-1 leads to loss of 5D4-reactive brain KS and reduction of glial scar formation after cortical stab injury in mice. During the development of mice deficient in GlcNAc6ST-1, KS expression in the brain was barely detectable with the KS-specific antibody 5D4. The reactivity of 5D4 antibody with protein tyrosine phosphatase zeta (PTPzeta), a KS proteoglycan (KSPG), was abolished in the deficient mice. In adults, brain injury induced 5D4-reactive KS synthesis in the wounded area in wild-type (WT) mice but not in the deficient mice. Glial scar is formed via the accumulation of reactive astrocytes and is a major obstacle to axonal regeneration by injured neurons. Reactive astrocytes appeared to similar extents in the two genotypes, but they accumulated in the wounded area to a lesser extent in the deficient mice. Consequently, the deficient mice exhibited a marked reduction of scarring and enhanced neuronal regeneration after brain injury. These findings highlight the indispensable role of GlcNAc6ST-1 in brain KS biosynthesis and glial scar formation after brain injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号