首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   7篇
  2023年   1篇
  2022年   3篇
  2021年   8篇
  2020年   6篇
  2019年   4篇
  2018年   5篇
  2017年   4篇
  2016年   7篇
  2015年   10篇
  2014年   12篇
  2013年   12篇
  2012年   19篇
  2011年   16篇
  2010年   5篇
  2009年   5篇
  2008年   6篇
  2007年   9篇
  2006年   6篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有177条查询结果,搜索用时 15 毫秒
21.
The problem of chemically synthesized nanoproducts motivated scientific community to explore ecofriendly methods of nanosynthesis. Diatoms belong to a group of aquatic, unicellular, photosynthetic microalgae have been scarcely investigated as a source of reducing and capping agents for nanosynthesis of pesticides and antibiotics. The present study reports a novel ecofriendly method for the fabrication of bioactive gold nanoparticles using locally isolated Nitzschia diatoms. The diatom-fabricated gold nanoparticles show characteristic ruby red colored with sharp absorbance peak at 529 nm. Electron microscopy confirmed irregular shape of gold nanoparticles, with average size of 43 nm and zeta potential of −16.8 mV. The effects of gold nanoparticles on diatom viability were investigated using light and electron microscopy. The mechanistic approach to shed light on how diatoms reacted after exposure to gold metal salt revealed that exposure to gold chloride triggers elevated levels of catalase and peroxidase (12.76 and 14.43 unit/mg protein, respectively) to relieve reactive oxygen species (ROS) stress induced by gold salt exposure. Investigation studies on mechanisms behind Nitzschia-mediated gold nanoparticles fabrication outlined the role of diatom proteins, polysaccharides in reduction, and stabilization of nanoparticles as confirmed by FT-IR analysis. Bioactivity of gold nanoparticles was accessed by coupling them with antibiotics (penicillin and streptomycin), which increased their antibacterial activity compared to individual nanoparticles and antibiotics (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus). Overall, the present novel phyco-nanotechnological approach is a promising tool to be used as sustainable strategy in green nanotechnology as well as to reduce use of antibiotics in microbial control.  相似文献   
22.
The regioselective synthesis of 1,4-disubstituted 1,2,3-bistriazoles from a variety of N-propargyl bis(indolyl)methanes with sodium azide using CuI as the catalyst in polyethyleneglycol-400 is reported. This process is of considerable synthetic advantages in terms of high atom economy, low environmental impact, mild reaction condition and good yields. The synthesized compounds have also been screened for their biological activity.  相似文献   
23.
Resistin, a small secretory molecule, has been implicated to play an important role in the development of insulin resistance under obese condition. For the past few decades, it has been linked to various cellular and metabolic functions. It has been associated with diseases like metabolic disorders, cardiovascular diseases and cancers. Numerous clinical studies have indicated an increased serum resistin level in pathological disorders which have been reported to increase mortality rate in comparison to low resistin expressing subjects. Various molecular studies suggest resistin plays a pivotal role in proliferation, metastasis, angiogenesis, inflammation as well as in regulating metabolism in cancer cells. Therefore, understanding the role of resistin and elucidating its’ associated molecular mechanism will give a better insight into the management of these disorders. In this article, we summarize the diverse roles of resistin in pathological disorders based on the available literature, clinicopathological data, and a compiled study from various databases. The article mainly provides comprehensive information of its role as a target in different treatment modalities in pre as well as post-clinical studies.  相似文献   
24.
Insulin is the key regulator of glucose homeostasis in mammals, and glucose-stimulated insulin biosynthesis is essential for maintaining glucose levels in a narrow range in mammals. Glucose specifically promotes the translation of insulin in pancreatic β-islet, and the untranslated regions of insulin mRNA play a role in such regulation. Specific factors in the β-islets bind to the insulin 5' UTR and regulate its translation. In the present study we identify protein-disulfide isomerase (PDI) as a key regulator of glucose-stimulated insulin biosynthesis. We show that both in vitro and in vivo PDI can specifically associate with the 5' UTR of insulin mRNA. Immunodepletion of PDI from the islet extract results in loss of glucose-stimulated translation indicating a critical role for PDI in insulin biosynthesis. Similarly, transient overexpression of PDI resulted in specific translation activation by glucose. We show that the RNA binding activity of PDI is mediated through PABP. PDI catalyzes the reduction of the PABP disulfide bond resulting in specific binding of PABP to the insulin 5' UTR. We also show that glucose stimulation of the islets results in activation of a specific kinase that can phosphorylate PDI. These findings identify PDI and PABP as important players in glucose homeostasis.  相似文献   
25.
Temperature is a major determinant of plant growth, development and success. Understanding how plants respond to temperature is particularly relevant in a warming climate. Plant immune responses are often suppressed above species‐specific critical temperatures. This is also true for intraspecific hybrids of Arabidopsis thaliana that express hybrid necrosis due to inappropriate activation of the immune system caused by epistatic interactions between alleles from different genomes. The relationship between temperature and defence is unclear, largely due to a lack of studies that assess immune activation over a wide range of temperatures. To test whether the temperature‐based suppression of ectopic immune activation in hybrids exhibits a linear or non‐linear relationship, we characterised the molecular and morphological phenotypes of two different necrotic A. thaliana hybrids over a range of ecologically relevant temperatures. We found both linear and non‐linear responses for expression of immunity markers and for morphological defects depending on the underlying genetic cause. This suggests that the influence of temperature on the trade‐off between immunity and growth depends on the specific defence components involved.  相似文献   
26.
Magnetic resonance spectroscopy (MRS) studies have previously described metabolite changes associated with aging of the healthy brain and provided insights into normal brain aging that can assist us in differentiating age-related changes from those associated with neurological disease. The present study investigates whether age-related changes in metabolite concentrations occur in the healthy cervical spinal cord. 25 healthy volunteers, aged 23–65 years, underwent conventional imaging and single-voxel MRS of the upper cervical cord using an optimised point resolved spectroscopy sequence on a 3T Achieva system. Metabolite concentrations normalised to unsuppressed water were quantified using LCModel and associations between age and spinal cord metabolite concentrations were examined using multiple regressions. A linear decline in total N-Acetyl-aspartate concentration (0.049 mmol/L lower per additional year of age, p = 0.010) and Glutamate-Glutamine concentration (0.054 mmol/L lower per additional year of age, p = 0.002) was seen within our sample age range, starting in the early twenties. The findings suggest that neuroaxonal loss and/or metabolic neuronal dysfunction, and decline in glutamate-glutamine neurotransmitter pool progress with aging.  相似文献   
27.
The Yamuna is the source of key water supply in the national capital region of India. Due to its immense importance, the pollution of Yamuna has become an imperative issue of study. Various initiatives have been taken by the Indian Government to decontaminate this river, but so far no possible outcome has been obtained. Therefore bioremediation may seem to be a promising approach. To assess the bioremediation potential of the microbes at river Yamuna, study of microbial diversity was carried out. Escherichia, Pseudomonas, Bacillus, Thermomicrobium, Azoarcus, Nitrosomonas and Shigella were the dominant genera present at the contaminated river coastal zone. The presence of Escherichia and Shigella indicated the sewage contamination in the river. On the other hand, the presence of Pseudomonas and Bacillus indicated the existence of indigenous bacterial communities capable of de-polluting the river, thus providing a promising approach to decontaminate Yamuna by natural means.  相似文献   
28.
In this review we examine techniques, software, and statistical analyses used in label-free quantitative proteomics studies for area under the curve and spectral counting approaches. Recent advances in the field are discussed in an order that reflects a logical workflow design. Examples of studies that follow this design are presented to highlight the requirement for statistical assessment and further experiments to validate results from label-free quantitation. Limitations of label-free approaches are considered, label-free approaches are compared with labelling techniques, and forward-looking applications for label-free quantitative data are presented. We conclude that label-free quantitative proteomics is a reliable, versatile, and cost-effective alternative to labelled quantitation.  相似文献   
29.
The objective was to understand the roles of multiple catechol dioxygenases in the type strain Sphingobium scionense WP01T (Liang and Lloyd-Jones in Int J Syst Evol Microbiol 60:413–416, 2010a) that was isolated from severely contaminated sawmill soil. The dioxygenases were identified by sequencing, examined by determining the substrate specificities of the recombinant enzymes, and by quantifying gene expression following exposure to model priority pollutants. Catechol dioxygenase genes encoding an extradiol xylE and two intradiol dioxygenases catA and clcA that are highly similar to sequences described in other sphingomonads are described in S. scionense WP01T. The distinct substrate specificities determined for the recombinant enzymes confirm the annotated gene functions and suggest different catabolic roles for each enzyme. The role of the three enzymes was evaluated by analysis of enzyme activity in crude cell extracts from cells grown on meta-toluate, benzoate, biphenyl, naphthalene and phenanthrene which revealed the co-induction of each enzyme by different substrates. This was corroborated by quantifying gene expression when cells were induced by biphenyl, naphthalene and pentachlorophenol. It is concluded that the ClcA and XylE enzymes are recruited in pathways that are involved in the degradation of chlorinated aromatic compounds such as pentachlorophenol, the XylE and ClcA enzymes will also play a role in degradation pathways that produce alkylcatechols, while the three enzymes ClcA, XylE and CatA will be simultaneously involved in pathways that generate catechol as a degradation pathway intermediate.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号