首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16524篇
  免费   1370篇
  国内免费   2篇
  17896篇
  2023年   51篇
  2022年   150篇
  2021年   276篇
  2020年   127篇
  2019年   222篇
  2018年   193篇
  2017年   205篇
  2016年   381篇
  2015年   637篇
  2014年   743篇
  2013年   904篇
  2012年   1248篇
  2011年   1308篇
  2010年   839篇
  2009年   701篇
  2008年   1103篇
  2007年   1151篇
  2006年   969篇
  2005年   964篇
  2004年   947篇
  2003年   950篇
  2002年   859篇
  2001年   151篇
  2000年   110篇
  1999年   156篇
  1998年   205篇
  1997年   153篇
  1996年   126篇
  1995年   120篇
  1994年   119篇
  1993年   129篇
  1992年   128篇
  1991年   110篇
  1990年   94篇
  1989年   87篇
  1988年   82篇
  1987年   74篇
  1986年   69篇
  1985年   94篇
  1984年   106篇
  1983年   87篇
  1982年   88篇
  1981年   103篇
  1980年   92篇
  1979年   57篇
  1978年   57篇
  1977年   61篇
  1976年   50篇
  1975年   32篇
  1974年   35篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
The dnaE gene of Salmonella typhimurium, like that of Escherichia coli, encodes the alpha subunit containing the polymerase activity of the principal replicative enzyme, DNA polymerase III. This gene, or one nearby, has been identified as the locus of suppressor mutations that promote growth by cells deleted for dnaQ, the gene for the editing subunit of this enzyme complex. Using a combination of nucleotide sequencing and marker rescue experiments, the alteration in one such suppressor was identified as a valine-to-glycine substitution at amino acid 832 of the 1,160-amino-acid alpha polypeptide. The alpha polypeptides of E. coli and S. typhimurium are identical in size and in 97% of their amino acid residues. Their identity includes the valine residue that was changed in the suppressor allele of S. typhimurium. We also localized a temperature-sensitive dnaE mutation to the 3' half of dnaE.  相似文献   
92.
The transport of human-mouse hybrid class I histocompatibility antigens has been studied in a mutant human cell line, 174 × CEM.T2 (T2). T2, a somatic cell hybrid of human B- and T-lymphoblastoid cell lines (B-LCL and T-LCL, respectively), synthesizes HLA-A2 and HLA-B5 glycoproteins, but expresses only low levels of A2 and undetectable levels of B5 at the cell surface. We have previously shown that the products of human class I genes introduced into T2 by transfection behave like the endogenous HLA-B5 glycoproteins, while the products of mouse class I alleles similarly introduced are transported normally to the cell surface. We have now determined that the surface expression of class I glycoproteins in T2 depends on the origin of the 1 and 2 domains. Human (HLA-B7) and mouse (H-2D p ) hybrid class I genes, encoding the leader, 1, and 2 sequences of one species fused to the 3, transmembrane, and cytoplasmic domains of the other, were transfected into T2. Normal surface expression of the hybrid class I molecule was observed in T2 only when the leader, 1, and 2-encoding exons were derived from the mouse gene. The reciprocal construct, encoding human leader, 1, and 2 domains fused to the mouse 3, transmembrane, and cytoplasmic regions, resulted in biosynthesis of a hybrid glycoprotein which was not transported to the cell surface. The products of both constructs were expressed normally in control cells. The effects of glycosylation on class I antigen transport were also studied using mutant class I constructs with altered glycosylation sites. Two mutant B7 genes encoding either an extra glycosylation site at position 176 or no glycosylation sites were transfected into T2. These mutant products were expressed at the cell surface in control cells, but were synthesized and not surface-expressed in T2. These data demonstrate that the HLA/H-2 transport dichotomy in T2 is a function of the origin of the 1 and/or 2 domains of the class I glycoprotein, and is not a reflection of glycosylation differences between the human and mouse molecules. Offprint requests to: P. Cresswell.  相似文献   
93.
Summary We have investigated the effects of high and low temperature on the synthesis and secretion of cellulases and other enzymes by two common and readily available strains ofTrichoderma reesei. While some effects were similar in both strains QM9414 and RUT-C30 (a reduction in cellulase production but stimulation of xylanase production at high temperature, and alterations in expression of the cellulase complex at low temperature), some specific differences between the strains were determined, most significantly an enhanced specific secretion rate (secretion/growth) at low growth temperature for QM9414.  相似文献   
94.
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were measured in 13 sequential 2 ml aliquots of cerebrospinal fluid (CSF) obtained by lumbar puncture from 7 young and 7 elderly healthy normal subjects. The slopes of the rostrocaudal gradients of AChE and BChE were calculated and compared to those of total protein concentration and the major dopaminergic metabolite homovanillic acid (HVA), for which a pronounced rostrocaudal gradient (with highest concentrations of HVA in more rostral CSF) is consistent with HVA originating primarily from the brain. AChE activity was higher in more caudal fractions of young, but not elderly subjects and there was a significant difference between the mean AChE gradient slopes in the young and old groups. These results suggest that the spinal cord makes an important contribution to AChE activity in lumbar CSF. Furthermore, the absence of a negative AChE gradient in elderly subjects may be the result of a greater rate of entry of cerebral AChE into CSF, possibly as a consequence of an increased ventricular surface area and shorter diffusion distances in atrophic elderly brains. In contrast to AChE, BChE activity and total protein concentrations were higher in more caudal CSF fractions of not only young but also old subjects. In addition, there was a significant correlation between the gradient slopes of BChE activity and total protein concentrations, suggesting that the majority of BChE activity in lumbar CSF derives from the same source as the majority of total protein, namely plasma. The diffuse (i.e. brain and spinal cord) origin of AChE in lumbar CSF would explain the relatively modest changes in lumbar CSF AChE activity in diseases involving certain central cholinergic systems, most notably Alzheimer's disease.  相似文献   
95.
Using a maximum-likelihood formalism, we have developed a method with which to reconstruct the sequences of ancestral proteins. Our approach allows the calculation of not only the most probable ancestral sequence but also of the probability of any amino acid at any given node in the evolutionary tree. Because we consider evolution on the amino acid level, we are better able to include effects of evolutionary pressure and take advantage of structural information about the protein through the use of mutation matrices that depend on secondary structure and surface accessibility. The computational complexity of this method scales linearly with the number of homologous proteins used to reconstruct the ancestral sequence.  相似文献   
96.
Damage to foliage of the tomato, Lycopersicon esculentum, causes the induction of proteinase inhibitors and of the oxidative enzymes polyphenol oxidase, peroxidase, and lipoxygenase. The time courses of induction of these proteins by feeding of two caterpillar species (Manduca sexta and Helicoverpa zea) were studied in a series of experiments. In another series of experiments, the effects of plant age on the inducibility of these proteins were studied. In the time course experiments, induction of proteinase inhibitors and oxidative enzymes in the damaged leaflet was rapid, with higher protein activities evident in damaged leaflets within 12–24 h of damage, depending on the enzyme and the species of insect used to damage the plant. Systemic induction of proteinase inhibitors was also rapid, but systemic induction of polyphenol oxidase was delayed relative to systemic induction of proteinase inhibitors, possibly because high constitutive polyphenol oxidase activities obscured expression of systemic induction at earlier time points. Lipoxygenase and peroxidase were not induced systemically. Induction of all proteins persisted for at least 21 days. In the phenology experiments, inducibility of all proteins decreased in magnitude and was less consistent as plants aged. The results of these experiments exemplify the numerous constraints on induction in tomato plants. Knowledge of these physiological constraints is important to an understanding of the ecological role and causal basis of induced resistance.  相似文献   
97.
Van der Woude syndrome (VWS) is the most frequent form of syndromic clefting. Linkage analysis has localized the gene between D1S245 and D1S414, an interval of 4.1 cM with the following order of loci: centromere–D1S245/D1S471–D1S491–D1S205–D1S414–telomere. A microdeletion around D1S205 aided in narrowing the critical region to D1S491–D1S414 by heterozygosity testing. In this study, the location was refined by detection of a recombinant with D1S205 in a new family, indicating that VWS lies between D1S491 and D1S205, a 1.6-cM interval. A roughly 3.5-Mb YAC contig was built from D1S245 through D1S414, encompassing the interval D1S491–D1S205 in level 1 or level 2 paths. Clones were assembled by sequence tagged site (STS) content using the five polymorphic markers from above, four novel STSs identified from YAC ends, and a new STS derived from probe CRI-L461 (D1S70). D1S70 was assigned to the critical region. One single YAC, yCEPH785B2, contains both flanking STSs (D1S491, D1S205). STS content mapping suggests neither chimerism nor deletion of yCEPH785B2 but does suggest that the maximum size of the critical region is approximately 850 kb. All STSs were tested for their presence on a somatic cell hybrid containing the microdeleted chromosome 1 as the sole human chromosome 1 component. Both the proximal and distal ends of the microdeletion mapped to the 850-kb YAC, yCEPH785B2. Therefore, the microdeletion overlapped the critical region, confirming the genetic recombinant data.  相似文献   
98.
Aflatoxins comprise a group of polyketide-derived carcinogenic mycotoxins produced byAspergillus parasiticus andAspergillus flavus. By transformation with a disruption construct, pXX, we disrupted the aflatoxin pathway inA. parasiticus SRRC 2043, resulting in the inability of this strain to produce aflatoxin intermediates as well as a major yellow pigment in the transformants. The disruption was attributed to a single-crossover, homologous integration event between pXX and the recipientA. parasiticus genome at a specific locus, designatedpksA. Sequence analysis suggest thatpksA is a homolog of theAspergillus nidulans wA gene, a polyketide synthase gene involved in conidial wall pigment biosynthesis. The conservedβ-ketoacyl synthase, acyltransferase and acyl carrier-protein domains were present in the deduced amino acid sequence of thepksA product. Noβ-ketoacyl reductase and enoyl reductase domains were found, suggesting thatpksA does not encode catalytic activities for processingβ-carbon similar to those required for long chain fatty acid synthesis. ThepksA gene is located in the aflatoxin pathway gene cluster and is linked to thenor-1 gene, an aflatoxin pathway gene required for converting norsolorinic acid to averantin. These two genes are divergently transcribed from a 1.5 kb intergenic region. We propose thatpksA is a polyketide synthase gene required for the early steps of aflatoxin biosynthesis.  相似文献   
99.
Precocene II was more toxic in 24 hour cultures than in 72 hour cultures of rat hepatocytes. In 24 hour cultures, there was no observable toxicity at 75 μM precocene II after exposure for 6 hours, but after 24 hours, 65% of the cells were dead. In contrast, although 794 μM killed 50% of the cells in the 72 hour cultures after a 24 hour exposure, 1 mM killed 96% of the cells within 6 hours. In both 24 and 72 hour cultures, cell death was preceded by a rapid, early loss of mitochondrial membrane potential, followed by decreases in glutathione, reduced pyridine nucleotide status, and plasma membrane Na+/K+-ATPase activity. There was also a rapid loss of ATP in the 72 hour cultures but not in the 24 hour cultures; therefore, onset of cell death may be closely linked to loss of ATP. Inhibition of cytochrome P-450 prevented the toxicity, and partially protected against the loss of membrane potential and glutathione, in 24 hour cultures but was ineffective in 72 hour cultures. Therefore, in addition to depletion of glutathione, precocene II appears to damage mitochondria and plasma membrane functions and can do so by more than one pathway. © 1996 John Wiley & Sons, Inc.  相似文献   
100.
Keratinocyte growth factor (KGF) is a member of the heparin-binding fibroblast growth factor family (FGF-7) with a distinctive pattern of target-cell specificity. Studies performed in cell culture suggested that KGF was mitogenically active only on epithelial cells, albeit from a variety of tissues. In contrast, KGF was produced solely by cells of mesenchymal origin, leading to the hypothesis that it might function as a paracrine mediator of mesenchymal-epithelial communication. Biochemical analysis and molecular cloning established that the KGF receptor (KGFR) was a tyrosine kinase isoform encoded by the fgfr-2 gene. Many detailed investigations of KGF and KGFR expression in whole tissue and cell lines largely substantiated the pattern initially perceived in vitro of mesenchymal and epithelial distribution, respectively. Moreover, functional assays in organ culture and in vivo and studies of KGF regulation by sex sterorid hormones reinforced the idea that KGF acts predominantly on epithelial cells to elicit a variety of responses including proliferation, migration and morphogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号