首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   958篇
  免费   91篇
  2019年   11篇
  2018年   9篇
  2017年   8篇
  2016年   9篇
  2015年   23篇
  2014年   32篇
  2013年   31篇
  2012年   35篇
  2011年   36篇
  2010年   27篇
  2009年   34篇
  2008年   20篇
  2007年   40篇
  2006年   36篇
  2005年   33篇
  2004年   34篇
  2003年   22篇
  2002年   25篇
  2001年   25篇
  2000年   29篇
  1999年   22篇
  1998年   14篇
  1996年   8篇
  1995年   11篇
  1994年   8篇
  1993年   11篇
  1992年   18篇
  1991年   14篇
  1990年   10篇
  1989年   12篇
  1987年   22篇
  1986年   11篇
  1985年   15篇
  1984年   14篇
  1983年   13篇
  1981年   8篇
  1978年   12篇
  1977年   14篇
  1976年   9篇
  1975年   22篇
  1974年   14篇
  1973年   15篇
  1972年   17篇
  1971年   9篇
  1970年   21篇
  1969年   12篇
  1968年   12篇
  1967年   11篇
  1966年   14篇
  1964年   13篇
排序方式: 共有1049条查询结果,搜索用时 31 毫秒
101.
Despite almost two decades since its discovery, White Spot Disease (WSD) caused by White Spot Syndrome Virus (WSSV) is still considered the most significant known pathogen impacting the sustainability and growth of the global penaeid shrimp farming industry. Although most commonly associated with penaeid shrimp farmed in tropical regions, the virus is also able to infect, cause disease and kill a wide range of other decapod crustacean hosts from temperate regions, including lobsters, crabs, crayfish and shrimp. For this reason, WSSV has recently been listed in European Community Council Directive 2006/88. Using principles laid down by the European Food Safety Authority (EFSA) we applied an array of diagnostic approaches to provide a definitive statement on the susceptibility to White Spot Syndrome Virus (WSSV) infection in seven ecologically or economically important crustacean species from Europe. We chose four marine species: Cancer pagurus, Homarus gammarus, Nephrops norvegicus and Carcinus maenas; one estuarine species, Eriocheir sinensis and two freshwater species, Austropotamobius pallipes and Pacifastacus leniusculus. Exposure trials based upon natural (feeding) and artificial (intra-muscular injection) routes of exposure to WSSV revealed universal susceptibility to WSSV infection in these hosts. However, the relative degree of susceptibility (measured by progression of infection to disease, and mortality) varied significantly between host species. In some instances (Type 1 hosts), pathogenesis mimicked that observed in penaeid shrimp hosts whereas in other examples (Types 2 and 3 hosts), infection did not readily progress to disease, even though hosts were considered as infected and susceptible according to accepted principles. Results arising from challenge studies are discussed in relation to the potential risk posed to non-target hosts by the inadvertent introduction of WSSV to European waters via trade. Furthermore, we highlight the potential for susceptible but relatively resistant hosts to serve as models to investigate natural mitigation strategies against WSSV in these hosts. We speculate that these non-model hosts may offer a unique insight into viral handling in crustaceans.  相似文献   
102.
103.
Leishmania major aquaglyceroporin (LmjAQP1) adventitiously facilitates the uptake of antimonite [Sb(III)], an active form of Pentostam® or Glucantime®, which are the first line of defence against all forms of leishmaniasis. The present paper shows that LmjAQP1 activity is modulated by the mitogen‐activated protein kinase, LmjMPK2. Leishmania parasites coexpressing LmjAQP1 and LmjMPK2 show increased Sb(III) uptake and increased Sb(III) sensitivity. When subjected to a hypo‐osmotic stress, these cells show faster volume recovery than cells expressing LmjAQP1 alone. LmjAQP1 is phosphorylated in vivo at Thr‐197 and this phosphorylation requires LmjMPK2 activity. Lys‐42 of LmjMPK2 is critical for its kinase activity. Cells expressing altered T197A LmjAQP1 or K42A LmjMPK2 showed decreased Sb(III) influx and a slower volume recovery than cells expressing wild‐type proteins. Phosphorylation of LmjAQP1 led to a decrease in its turnover rate affecting LmjAQP1 activity. Although LmjAQP1 is localized to the flagellum of promastigotes, upon phosphorylation, it is relocalized to the entire surface of the parasite. Leishmania mexicana promastigotes with an MPK2 deletion showed reduced Sb(III) uptake and slower volume recovery than wild‐type cells. This is the first report where a parasite aquaglyceroporin activity is post‐translationally modulated by a mitogen‐activated protein kinase.  相似文献   
104.
The Golgi apparatus is the central organelle in the secretory pathway and plays key roles in glycosylation, protein sorting, and secretion in plants. Enzymes involved in the biosynthesis of complex polysaccharides, glycoproteins, and glycolipids are located in this organelle, but the majority of them remain uncharacterized. Here, we studied the Arabidopsis (Arabidopsis thaliana) membrane proteome with a focus on the Golgi apparatus using localization of organelle proteins by isotope tagging. By applying multivariate data analysis to a combined data set of two new and two previously published localization of organelle proteins by isotope tagging experiments, we identified the subcellular localization of 1,110 proteins with high confidence. These include 197 Golgi apparatus proteins, 79 of which have not been localized previously by a high-confidence method, as well as the localization of 304 endoplasmic reticulum and 208 plasma membrane proteins. Comparison of the hydrophobic domains of the localized proteins showed that the single-span transmembrane domains have unique properties in each organelle. Many of the novel Golgi-localized proteins belong to uncharacterized protein families. Structure-based homology analysis identified 12 putative Golgi glycosyltransferase (GT) families that have no functionally characterized members and, therefore, are not yet assigned to a Carbohydrate-Active Enzymes database GT family. The substantial numbers of these putative GTs lead us to estimate that the true number of plant Golgi GTs might be one-third above those currently annotated. Other newly identified proteins are likely to be involved in the transport and interconversion of nucleotide sugar substrates as well as polysaccharide and protein modification.The Golgi apparatus is the central organelle in the secretory pathway, and in higher plants it is involved in the biosynthesis and transport of cell wall matrix polysaccharides, glycoproteins, proteoglycans, and glycolipids as well as in protein trafficking to different subcellular compartments. The last decade has produced substantial findings on the function of the Golgi apparatus: insights into the protein trafficking at the endoplasmic reticulum (ER)/Golgi interface, Golgi structural maintenance, its involvement in endocytosis, and its behavior during cell division (for review, see Faso et al., 2009). However, despite its importance, only a small proportion of the Golgi proteome has been studied: relatively few Golgi proteins have been localized, and even fewer have been functionally characterized.The Golgi apparatus is thought to contain a large and diverse group of membrane-bound glycosyltransferases (GTs). The current view is that different GT activities are required for synthesis of the linkage between different donor and acceptor sugars. Having in mind the diversity of linkage types found in cell wall polysaccharides, the number of different GTs involved is likely to be very large. For instance, it has been estimated that for the biosynthesis of pectin alone, the action of 65 different enzymatic activities is needed (Caffall and Mohnen, 2009). By the end of the year 2011, 468 Arabidopsis (Arabidopsis thaliana) sequences had been annotated in the Carbohydrate-Active EnZymes (CAZy) GT database (Cantarel et al., 2009; http://www.cazy.org). We estimate that two-thirds of these CAZy-classified GTs may be targeted to the Golgi. The remaining one-third are cytosolic or plastidic enzymes involved in processes including, secondary metabolism or starch synthesis. The reported sequences are classified into 43 CAZy families based on amino acid sequence similarities within which at least one member has been biochemically characterized. Each family is likely to have a common structural fold, and three-dimensional (3-D) structures have been resolved for 20 of these 43 families. These are divided mostly into two structural classes, having either a GT-A fold or a GT-B fold (Unligil and Rini, 2000; Bourne and Henrissat, 2001). Moreover, most of the structurally uncharacterized GT families are predicted to adopt either the GT-A or GT-B fold based on 3-D structural homology modeling (Coutinho et al., 2003; Lairson et al., 2008). Despite this conserved 3-D structure, different GT families have very low or undetectable sequence similarities. Consequently, predicting novel GTs based solely on their amino acid sequence similarities is not always achievable, and structural homology searches have also proven useful (Hansen et al., 2009).The length and properties of the transmembrane domain (TMD) of endomembrane proteins appear to play a role in protein sorting and location within the secretory pathway and can be used to predict protein localization (Hanton et al., 2005; Sharpe et al., 2010). In order to perform such predictions, a high number of experimentally localized proteins is required, but only limited data sets have been available for plants to date.In order to identify the most abundant CAZy-classified GTs as well as novel putative GTs, in this work we rigorously extended our proteomic studies of the Golgi apparatus. We have previously developed a high-throughput mass spectrometry (MS)-based quantitative proteomics technique for localization of organelle proteins by isotope tagging (LOPIT; Dunkley et al., 2004, 2006). Here, we report new LOPIT data sets and apply a new method of combining them with published LOPIT data sets, localizing an unprecedented number of plant organelle proteins. We have analyzed the TMD properties of the proteins assigned to the ER, Golgi, and plasma membrane (PM) and determined the organelle-specific features. Structural prediction analysis of the Golgi-localized proteins with unknown functions assessed the protein sequences for the potential to fold similarly to known GT structures. We found that the Golgi contains a substantial number of candidate GT families that have no characterized functions. These results yield a broader understanding of the Golgi function and its biochemical properties.  相似文献   
105.

Background

Motility is an important component of Salmonella enterica serovar Typhimurium (ST) pathogenesis allowing the bacteria to move into appropriate niches, across the mucus layer and invade the intestinal epithelium. In vitro, flagellum-associated motility is closely related to the invasive properties of ST. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B) is widely prescribed for the prophylaxis and treatment of diarrheal diseases caused by bacteria or antibiotics. In case of Salmonella infection, S.b-B has been shown to decrease ST invasion of T84 colon cell line. The present study was designed to investigate the impact of S.b-B on ST motility.

Methodology/Principal Findings

Experiments were performed on human colonic T84 cells infected by the Salmonella strain 1344 alone or in the presence of S.b-B. The motility of Salmonella was recorded by time-lapse video microscopy. Next, a manual tracking was performed to analyze bacteria dynamics (MTrackJ plugin, NIH image J software). This revealed that the speed of bacterial movement was modified in the presence of S.b-B. The median curvilinear velocity (CLV) of Salmonella incubated alone with T84 decreased from 43.3 µm/sec to 31.2 µm/sec in the presence of S.b-B. Measurement of track linearity (TL) showed similar trends: S.b-B decreased by 15% the number of bacteria with linear tract (LT) and increased by 22% the number of bacteria with rotator tract (RT). Correlation between ST motility and invasion was further established by studying a non-motile flagella-deficient ST strain. Indeed this strain that moved with a CLV of 0.5 µm/sec, presented a majority of RT and a significant decrease in invasion properties. Importantly, we show that S.b-B modified the motility of the pathogenic strain SL1344 and significantly decreased invasion of T84 cells by this strain.

Conclusions

This study reveals that S.b-B modifies Salmonella''s motility and trajectory which may account for the modification of Salmonella''s invasion.  相似文献   
106.
Munro D  Blier PU 《Aging cell》2012,11(5):845-855
The deleterious reactive carbonyls released upon oxidation of polyunsaturated fatty acids in biological membranes are believed to foster cellular aging. Comparative studies in mammals and birds have shown that the susceptibility to peroxidation of membrane lipids peroxidation index (PI) is negatively correlated with longevity. Long‐living marine molluscs are increasingly studied as longevity models, and the presence of different types of lipids in the membranes of these organisms raises questions on the existence of a PI–longevity relationship. We address this question by comparing the longest living metazoan species, the mud clam Arctica islandica (maximum reported longevity = 507 year) to four other sympatric bivalve molluscs greatly differing in longevity (28, 37, 92, and 106 year). We contrasted the acyl and alkenyl chain composition of phospholipids from the mitochondrial membranes of these species. The analysis was reproduced in parallel for a mix of other cell membranes to investigate whether a different PI–longevity relationship would be found. The mitochondrial membrane PI was found to have an exponential decrease with increasing longevity among species and is significantly lower for A. islandica. The PI of other cell membranes showed a linear decrease with increasing longevity among species and was also significantly lower for A. islandica. These results clearly demonstrate that the PI also decreases with increasing longevity in marine bivalves and that it decreases faster in the mitochondrial membrane than in other membranes in general. Furthermore, the particularly low PI values for A. islandica can partly explain this species’ extreme longevity.  相似文献   
107.
Microglia and macrophages are recruited to sites of retinal degeneration where local cytokines and chemokines determine protective or neurotoxic microglia responses. Defining the role of Ccl2-Ccr2 and Cx3cl1-Cx3cr1 signalling for retinal pathology is of particular interest because of its potential role in age-related macular degeneration (AMD). Ccl2, Ccr2, and Cx3cr1 signalling defects impair macrophage trafficking, but have, in several conflicting studies, been reported to show different degrees of age-related retinal degeneration. Ccl2/Cx3cr1 double knockout (CCDKO) mice show an early onset retinal degeneration and have been suggested as a model for AMD. In order to understand phenotypic discrepancies in different chemokine knockout lines and to study how defects in Ccl2 and/or Cx3cr1 signalling contribute to the described early onset retinal degeneration, we defined primary and secondary pathological events in CCDKO mice. To control for genetic background variability, we compared the original phenotype with that of single Ccl2, Cx3cr1 and Ccl2/Cx3cr1 double knockout mice obtained from backcrosses of CCDKO with C57Bl/6 mice. We found that the primary pathological event in CCDKO mice develops in the inferior outer nuclear layer independently of light around postnatal day P14. RPE and vascular lesions develop secondarily with increasing penetrance with age and are clinically similar to retinal telangiectasia not to choroidal neovascularisation. Furthermore, we provide evidence that a third autosomal recessive gene causes the degeneration in CCDKO mice and in all affected re-derived lines and subsequently demonstrated co-segregation of the naturally occurring RD8 mutation in the Crb1 gene. By comparing CCDKO mice with re-derived CCl2(-/-)/Crb1(Rd8/RD8), Cx3cr1(-/-)/Crb1(Rd8/RD8) and CCl2(-/-)/Cx3cr1(-/-)/Crb1(Rd8/RD8) mice, we observed a differential modulation of the retinal phenotype by genetic background and both chemokine signalling pathways. These findings indicate that CCDKO mice are not a model of AMD, but a model for an inherited retinal degeneration that is differentially modulated by Ccl2-Ccr2 and Cx3cl1-Cx3cr1 chemokine signalling.  相似文献   
108.
Mice lacking the axon guidance molecule EphA4 have been shown to exhibit extensive axonal regeneration and functional recovery following spinal cord injury. To assess mechanisms by which EphA4 may modify the response to neural injury a microarray was performed on spinal cord tissue from mice with spinal cord injury and sham injured controls. RNA was purified from spinal cords of adult EphA4 knockout and wild-type mice four days following lumbar spinal cord hemisection or laminectomy only and was hybridised to Affymetrix All-Exon Array 1.0 GeneChips?. While subsequent analyses indicated that several pathways were altered in EphA4 knockout mice, of particular interest was the attenuated expression of a number of inflammatory genes, including Arginase 1, expression of which was lower in injured EphA4 knockout compared to wild-type mice. Immunohistological analyses of different cellular components of the immune response were then performed in injured EphA4 knockout and wildtype spinal cords. While numbers of infiltrating CD3+ T cells were low in the hemisection model, a robust CD11b+ macrophage/microglial response was observed post-injury. There was no difference in the overall number or spread of macrophages/activated microglia in injured EphA4 knockout compared to wild-type spinal cords at 2, 4 or 14 days post-injury, however a lower proportion of Arginase-1 immunoreactive macrophages/activated microglia was observed in EphA4 knockout spinal cords at 4 days post-injury. Subtle alterations in the neuroinflammatory response in injured EphA4 knockout spinal cords may contribute to the regeneration and recovery observed in these mice following injury.  相似文献   
109.
Biologic drugs, such as monoclonal antibodies, are commonly made using mammalian cells in culture. The cell lines used for manufacturing should ideally be clonal, meaning derived from a single cell, which represents a technically challenging process. Fetal bovine serum is often used to support low cell density cultures, however, from a regulatory perspective, it is preferable to avoid animal‐derived components to increase process consistency and reduce the risk of contamination from adventitious agents. Chinese hamster ovary (CHO) cells are the most widely used cell line in industry and a large number of serum‐free, protein‐free, and fully chemically defined growth media are commercially available, although these media alone do not readily support efficient single cell cloning. In this work, we have developed a simple, fully defined, single‐cell cloning media, specifically for CHO cells, using commercially available reagents. Our results show that a 1:1 mixture of CD‐CHO? and DMEM/F12 supplemented with 1.5 g/L of recombinant albumin (Albucult®) supports single cell cloning. This formulation can support recovery of single cells in 43% of cultures compared to 62% in the presence of serum. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   
110.
The endoplasmic reticulum (ER) is the site of synthesis of secreted and membrane proteins. To exit the ER, proteins are packaged into COPII vesicles through direct interaction with the COPII coat or aided by specific cargo receptors. Despite the fundamental role of such cargo receptors in protein traffic, only a few have been identified; their cargo spectrum is unknown and the signals they recognize remain poorly understood. We present here an approach we term "PAIRS" (pairing analysis of cargo receptors), which combines systematic genetic manipulations of yeast with automated microscopy screening, to map the spectrum of cargo for a known receptor or to uncover a novel receptor for a particular cargo. Using PAIRS we followed the fate of ~150 cargos on the background of mutations in nine putative cargo receptors and identified novel cargo for most of these receptors. Deletion of the Erv14 cargo receptor affected the widest range of cargo. Erv14 substrates have a wide array of functions and structures; however, they are all membrane-spanning proteins of the late secretory pathway or plasma membrane. Proteins residing in these organelles have longer transmembrane domains (TMDs). Detailed examination of one cargo supported the hypothesis that Erv14 dependency reflects the length rather than the sequence of the TMD. The PAIRS approach allowed us to uncover new cargo for known cargo receptors and to obtain an unbiased look at specificity in cargo selection. Obtaining the spectrum of cargo for a cargo receptor allows a novel perspective on its mode of action. The rules that appear to guide Erv14 substrate recognition suggest that sorting of membrane proteins at multiple points in the secretory pathway could depend on the physical properties of TMDs. Such a mechanism would allow diverse proteins to utilize a few receptors without the constraints of evolving location-specific sorting motifs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号