首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   953篇
  免费   89篇
  2019年   10篇
  2018年   9篇
  2017年   8篇
  2016年   11篇
  2015年   22篇
  2014年   31篇
  2013年   28篇
  2012年   36篇
  2011年   44篇
  2010年   35篇
  2009年   32篇
  2008年   26篇
  2007年   39篇
  2006年   35篇
  2005年   30篇
  2004年   32篇
  2003年   21篇
  2002年   25篇
  2001年   24篇
  2000年   27篇
  1999年   21篇
  1998年   12篇
  1995年   9篇
  1994年   7篇
  1993年   11篇
  1992年   17篇
  1991年   13篇
  1990年   11篇
  1989年   11篇
  1987年   22篇
  1986年   10篇
  1985年   15篇
  1984年   14篇
  1983年   13篇
  1981年   7篇
  1978年   12篇
  1977年   14篇
  1976年   10篇
  1975年   22篇
  1974年   14篇
  1973年   15篇
  1972年   17篇
  1971年   9篇
  1970年   21篇
  1969年   12篇
  1968年   12篇
  1967年   11篇
  1966年   14篇
  1965年   7篇
  1964年   13篇
排序方式: 共有1042条查询结果,搜索用时 812 毫秒
781.
The first comprehensive cladistic analysis of Reduviidae, the assassin bugs, based on molecular data is presented and discussed in the context of a recently-published morphological analysis. Assassin bugs are essential components of ecosystems, but also important in agriculture and medicine. Sampling included 94 taxa (89 Reduviidae, 5 outgroups) in 15 subfamilies and 24 tribes of Reduviidae and is based on 3300 base pairs of mitochondrial (16S) and nuclear (18S, 28SD2, 28SD3-5) ribosomal DNA. Partitions of the dataset were aligned using different algorithms implemented in MAFFT and the combined dataset was analyzed using parsimony, partitioned maximum likelihood and partitioned Bayesian criteria. Clades recovered in all analyses, independent of alignment and analytical method, comprise: Cimicomorpha and Reduviidae; Hammacerinae; Harpactorinae; Apiomerini; Peiratinae; Phymatinae; Salyavatinae; Triatominae; Phymatinae + Holoptilinae; the higher Reduviidae (Reduviidae excluding Hammacerinae and the Phymatine Complex); Ectrichodiinae + Tribelocephalinae; (Triatominae + Zelurus) + Stenopodainae. Hammacerinae are rejected as sister group to all remaining Reduviidae in all analyses, as is the monophyly of Reduviinae, Emesinae and Harpactorini. High support values for Triatominae imply that blood-feeding has evolved only once within Reduviidae. Stenopodainae and part of Reduviinae are discussed as close relatives to Triatominae.  相似文献   
782.
Streptococcus sanguinis is an important cause of infective endocarditis. Previous studies have identified lipoproteins as virulence determinants in other streptococcal species. Using a bioinformatic approach, we identified 52 putative lipoprotein genes in S. sanguinis strain SK36 as well as genes encoding the lipoprotein-processing enzymes prolipoprotein diacylglyceryl transferase (lgt) and signal peptidase II (lspA). We employed a directed signature-tagged mutagenesis approach to systematically disrupt these genes and screen each mutant for the loss of virulence in an animal model of endocarditis. All mutants were viable. In competitive index assays, mutation of a putative phosphate transporter reduced in vivo competitiveness by 14-fold but also reduced in vitro viability by more than 20-fold. Mutations in lgt, lspA, or an uncharacterized lipoprotein gene reduced competitiveness by two- to threefold in the animal model and in broth culture. Mutation of ssaB, encoding a putative metal transporter, produced a similar effect in culture but reduced in vivo competiveness by >1,000-fold. [3H]palmitate labeling and Western blot analysis confirmed that the lgt mutant failed to acylate lipoproteins, that the lspA mutant had a general defect in lipoprotein cleavage, and that SsaB was processed differently in both mutants. These results indicate that the loss of a single lipoprotein, SsaB, dramatically reduces endocarditis virulence, whereas the loss of most other lipoproteins or of normal lipoprotein processing has no more than a minor effect on virulence.Streptococcus sanguinis is a member of the viridans group of streptococci and is a primary colonizer of teeth (8). The viridans species and, in particular, S. sanguinis (15, 18) are a leading cause of infective endocarditis, a serious infection of the valves or lining of the heart (48). Damage to the heart resulting from rheumatic fever or certain congenital heart defects dramatically increases the risk of developing endocarditis (48, 71). The damage is thought to result in the formation of sterile cardiac “vegetations” composed of platelets and fibrin (48) that can be colonized by certain bacteria during periods of bacteremia. This view is supported by animal studies in which formation of sterile vegetation by cardiac catheterization is required for the efficient establishment of streptococcal endocarditis (17). Prevention of infective endocarditis currently relies upon prophylactic administration of antibiotics prior to dental or other surgical procedures that are likely to produce bacteremia. The growing realization that oral bacteria such as S. sanguinis can enter the bloodstream through routine daily activities such as eating has led the American Heart Association (71) and others (57) to question the value of using antibiotic prophylaxis for dental procedures. Clearly, a better understanding of the bacterial virulence factors that contribute to endocarditis could lead to better preventive measures, such as a vaccine that could potentially afford continuous protection to high-risk patients (71).In a previous study, we used the signature-tagged mutagenesis (STM) technique to search for endocarditis virulence factors of S. sanguinis in a rabbit model (53). This study identified a number of housekeeping enzymes that contribute to endocarditis. Because these proteins are not likely to be surface localized, they hold little promise as vaccine candidates. One class of streptococcal surface proteins that is rich in both virulence factors (4, 7, 25, 33, 38, 60) and promising vaccine candidates (6, 39, 42, 51, 70) is the lipoproteins. Lipoprotein activities that have been suggested to contribute to streptococcal virulence include adhesion (4, 7, 63), posttranslational modification (25, 29, 51), and ATP-binding cassette (ABC)-mediated transport (33, 52, 60). In the last instance, lipoproteins anchored to the cell membrane by their lipid tails appear to serve the same transport function as the periplasmic substrate-binding proteins of gram-negative bacteria (66). STM studies performed with Streptococcus pneumoniae (26, 41, 55) and Streptococcus agalactiae (34) have identified multiple lipoprotein mutants among collections of reduced virulence mutants. In an attempt to determine the cumulative contribution of streptococcal lipoproteins to virulence, some investigators have created mutations in the lgt or lspA genes, encoding lipoprotein-processing enzymes (12, 25, 27, 36). The lgt gene encodes prolipoprotein diacylglyceryl transferase, which catalyzes the transfer of a diacylglycerol lipid unit to a cysteine in the conserved N-terminal “lipobox” of lipoproteins, while lspA encodes the signal peptidase II enzyme that cleaves the signal peptide of the prolipoprotein just prior to the conserved cysteine (59, 65). While mutation of these genes has been shown to be lethal in gram-negative bacteria (21, 73), many gram-positive bacterial species have been shown to tolerate such mutations, often with only minor effects on growth (3, 12, 13, 25, 27, 36, 54). Some of these studies indicated a deleterious effect on the virulence of the lgt (25, 54) or lspA (36) mutation, but others found no effect (12) or an enhancement of virulence (27). It is clear from these and other studies (3, 13) that neither the loss of acylation due to lgt inactivation nor the loss of signal peptidase II-mediated cleavage completely eliminates lipoprotein function, necessitating alternative approaches for assessing the global contribution of lipoproteins to virulence.We have used bioinformatic approaches to identify every putative lipoprotein encoded by S. sanguinis strain SK36. To determine the contribution of these lipoproteins to the endocarditis virulence of S. sanguinis, we have systematically mutagenized each of these genes, as well as the lgt and lspA genes, and evaluated these mutants for virulence by using STM in an animal model. Selected mutants were further examined for virulence in competitive index (CI) assays. A strain with a disrupted ssaB gene, which encodes a putative metal transport protein, was found to exhibit a profound defect in virulence that was far greater than that of any other strain tested, including the lgt or lspA mutant.  相似文献   
783.
784.
The current study investigated mechanical predictors for the development of adjacent disc degeneration. A 3-D finite element model of a lumbar spine was modified to simulate two grades of degeneration at the L4–L5 disc. Degeneration was modeled by changes in geometry and material properties. All models were subjected to follower preloads of 800 N and moment loads in the three principal directions of motion using a hybrid protocol. Degeneration caused changes in the loading and motion patterns of the segments above and below the degenerated disc. At the level (L3–L4) above the degenerated disc, the motion increased due to moderate degeneration by 21% under lateral bending, 26% under axial rotation and 28% under flexion/extension. At the level (L5-S1) below the degenerated disc, motion increased only during lateral bending by 20% due to moderate degeneration. Both the L3–L4 and L5-S1 segment showed a monotonic increase in both the maximum von Mises stress and shear stress in the annulus as degeneration progressed for all loading directions, expect extension at L3–L4. The most significant increase in stress was observed at the L5-S1 level during axial rotation with nearly a ten-fold increase in the maximum shear stress and 103% increase in the maximum von Mises stress. The L5-S1 segment also showed a progressive increase in facet contact force for all loading directions with degeneration. Nucleus pressure did not increase significantly for any loading direction at either the caudal or cephalic adjacent segment. Results suggest that single-level degeneration can increase the risk for injury at the adjacent levels.  相似文献   
785.
A promising new method of marking larval freshwater fishes with enriched stable isotopes by means of injecting the maternal parent with the marking agent was investigated. The 138Ba:137Ba ratios in the otoliths of larval golden perch Macquaria ambigua were compared to determine the effect of injecting female broodstock with different dosages of enriched 137Ba at various times before spawning. There was 100% mark success in the progeny of fish injected with 20 μg g−1 of enriched 137Ba 24 h before inducing spawning with hormones and 40 μg g−1 administered at the same time as inducement of spawning. Injection of 40 μg g−1 enriched 137Ba 21 days before spawning resulted in only 81% mark success and suggests rapid elimination of barium in M. ambigua . Injection with enriched 137Ba did not significantly affect the fertilization rate, number of fertilized eggs or hatching rate compared with long-term hatchery records. These results suggest that transgenerational marking is an effective and affordable means of mass-marking larval fishes. Thousands of larval fishes can be permanently marked with a unique artificial isotopic mark via a single injection into the maternal parent, thus avoiding the handling of individual fishes or having to deal with chemical baths. Because no single mark or tagging method is suitable for all situations, transgenerational marking with enriched stable isotopes provides another method for researchers and managers to discriminate both hatchery-reared and wild fishes.  相似文献   
786.
Many bacterial genes are controlled by metabolite sensing motifs known as riboswitches, normally located in the 5′ un-translated region of their mRNAs. Small molecular metabolites bind to the aptamer domain of riboswitches with amazing specificity, modulating gene regulation in a feedback loop as a result of induced conformational changes in the expression platform. Here, we report the results of molecular dynamics simulation studies of the S-adenosylmethionine (SAM)-II riboswitch that is involved in regulating translation in sulfur metabolic pathways in bacteria. We show that the ensemble of conformations of the unbound form of the SAM-II riboswitch is a loose pseudoknot structure that periodically visits conformations similar to the bound form, and the pseudoknot structure is only fully formed upon binding the metabolite, SAM. The rate of forming contacts in the unbound form that are similar to that in the bound form is fast. Ligand binding to SAM-II alters the curvature and base-pairing of the expression platform that could affect the interaction of the latter with the ribosome.  相似文献   
787.
788.
BACKGROUND: Many gene networks used by developing organisms have been conserved over long periods of evolutionary time. Why is that? We showed previously that a model of the segment polarity network in Drosophila is robust to parameter variation and is likely to act as a semiautonomous patterning module. Is this true of other networks as well? RESULTS: We present a model of the core neurogenic network in Drosophila. Our model exhibits at least three related pattern-resolving behaviors that the real neurogenic network accomplishes during embryogenesis in Drosophila. Furthermore, we find that it exhibits these behaviors across a wide range of parameter values, with most of its parameters able to vary more than an order of magnitude while it still successfully forms our test patterns. With a single set of parameters, different initial conditions (prepatterns) can select between different behaviors in the network's repertoire. We introduce two new measures for quantifying network robustness that mimic recombination and allelic divergence and use these to reveal the shape of the domain in the parameter space in which the model functions. We show that lateral inhibition yields robustness to changes in prepatterns and suggest a reconciliation of two divergent sets of experimental results. Finally, we show that, for this model, robustness confers functional flexibility. CONCLUSIONS: The neurogenic network is robust to changes in parameter values, which gives it the flexibility to make new patterns. Our model also offers a possible resolution of a debate on the role of lateral inhibition in cell fate specification.  相似文献   
789.
Anti-fungal therapy at the HAART of viral therapy   总被引:5,自引:0,他引:5  
HIV-positive patients receiving combination therapy (highly active anti-retroviral treatment, HAART) suffer significantly fewer oral infections with the opportunistic fungal pathogen Candida albicans than non-HAART-treated patients. One component of HAART is an inhibitor of the HIV proteinase, the enzyme required for correct processing of retroviral precursor proteins. It would appear that HIV proteinase inhibitors also have a direct effect on one of the key virulence factors of C. albicans, the secreted aspartic proteinases (Saps). This suggests that the reduction in C. albicans infections in HIV-positive patients might not be solely the result of improved immunological status but could also be caused by the HAART treatment directly inhibiting Candida proteinases.  相似文献   
790.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号