首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   953篇
  免费   89篇
  2019年   10篇
  2018年   9篇
  2017年   8篇
  2016年   11篇
  2015年   22篇
  2014年   31篇
  2013年   28篇
  2012年   36篇
  2011年   44篇
  2010年   35篇
  2009年   32篇
  2008年   26篇
  2007年   39篇
  2006年   35篇
  2005年   30篇
  2004年   32篇
  2003年   21篇
  2002年   25篇
  2001年   24篇
  2000年   27篇
  1999年   21篇
  1998年   12篇
  1995年   9篇
  1994年   7篇
  1993年   11篇
  1992年   17篇
  1991年   13篇
  1990年   11篇
  1989年   11篇
  1987年   22篇
  1986年   10篇
  1985年   15篇
  1984年   14篇
  1983年   13篇
  1981年   7篇
  1978年   12篇
  1977年   14篇
  1976年   10篇
  1975年   22篇
  1974年   14篇
  1973年   15篇
  1972年   17篇
  1971年   9篇
  1970年   21篇
  1969年   12篇
  1968年   12篇
  1967年   11篇
  1966年   14篇
  1965年   7篇
  1964年   13篇
排序方式: 共有1042条查询结果,搜索用时 0 毫秒
111.
Biologic drugs, such as monoclonal antibodies, are commonly made using mammalian cells in culture. The cell lines used for manufacturing should ideally be clonal, meaning derived from a single cell, which represents a technically challenging process. Fetal bovine serum is often used to support low cell density cultures, however, from a regulatory perspective, it is preferable to avoid animal‐derived components to increase process consistency and reduce the risk of contamination from adventitious agents. Chinese hamster ovary (CHO) cells are the most widely used cell line in industry and a large number of serum‐free, protein‐free, and fully chemically defined growth media are commercially available, although these media alone do not readily support efficient single cell cloning. In this work, we have developed a simple, fully defined, single‐cell cloning media, specifically for CHO cells, using commercially available reagents. Our results show that a 1:1 mixture of CD‐CHO? and DMEM/F12 supplemented with 1.5 g/L of recombinant albumin (Albucult®) supports single cell cloning. This formulation can support recovery of single cells in 43% of cultures compared to 62% in the presence of serum. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   
112.
113.
The endoplasmic reticulum (ER) is the site of synthesis of secreted and membrane proteins. To exit the ER, proteins are packaged into COPII vesicles through direct interaction with the COPII coat or aided by specific cargo receptors. Despite the fundamental role of such cargo receptors in protein traffic, only a few have been identified; their cargo spectrum is unknown and the signals they recognize remain poorly understood. We present here an approach we term "PAIRS" (pairing analysis of cargo receptors), which combines systematic genetic manipulations of yeast with automated microscopy screening, to map the spectrum of cargo for a known receptor or to uncover a novel receptor for a particular cargo. Using PAIRS we followed the fate of ~150 cargos on the background of mutations in nine putative cargo receptors and identified novel cargo for most of these receptors. Deletion of the Erv14 cargo receptor affected the widest range of cargo. Erv14 substrates have a wide array of functions and structures; however, they are all membrane-spanning proteins of the late secretory pathway or plasma membrane. Proteins residing in these organelles have longer transmembrane domains (TMDs). Detailed examination of one cargo supported the hypothesis that Erv14 dependency reflects the length rather than the sequence of the TMD. The PAIRS approach allowed us to uncover new cargo for known cargo receptors and to obtain an unbiased look at specificity in cargo selection. Obtaining the spectrum of cargo for a cargo receptor allows a novel perspective on its mode of action. The rules that appear to guide Erv14 substrate recognition suggest that sorting of membrane proteins at multiple points in the secretory pathway could depend on the physical properties of TMDs. Such a mechanism would allow diverse proteins to utilize a few receptors without the constraints of evolving location-specific sorting motifs.  相似文献   
114.
Human embryonic stem cell (hESC) derivatives show promise as viable cell therapy options for multiple disorders in different tissues. Recent advances in stem cell biology have lead to the reliable production and detailed molecular characterisation of a range of cell-types. However, the role of mitochondria during differentiation has yet to be fully elucidated. Mitochondria mediate a cells response to altered energy requirements (e.g. cardiomyocyte contraction) and, as such, the mitochondrial phenotype is likely to change during the dynamic process of hESC differentiation. We demonstrate that manipulating mitochondrial biogenesis alters mesendoderm commitment. To investigate mitochondrial localisation during early lineage specification of hESCs we developed a mitochondrial reporter line, KMEL2, in which sequences encoding the green fluorescent protein (GFP) are targeted to the mitochondria. Differentiation of KMEL2 lines into the three germ layers showed that the mitochondria in these differentiated progeny are GFP positive. Therefore, KMEL2 hESCs facilitate the study of mitochondria in a range of cell types and, importantly, permit real-time analysis of mitochondria via the GFP tag.  相似文献   
115.
Brenner S  Hay S  Munro AW  Scrutton NS 《The FEBS journal》2008,275(18):4540-4557
This study on human cytochrome P450 reductase (CPR) presents a comprehensive analysis of the thermodynamic and kinetic effects of pH and solvent on two- and four-electron reduction in this diflavin enzyme. pH-dependent redox potentiometry revealed that the thermodynamic equilibrium between various two-electron reduced enzyme species (FMNH*,FADH*; FMN,FADH2; FMNH2,FAD) is independent of pH. No shift from the blue, neutral di-semiquinone (FMNH*,FADH*) towards the red, anionic species is observed upon increasing the pH from 6.5 to 8.5. Spectrophotometric analysis of events following the mixing of oxidized CPR and NADPH (1 to 1) in a stopped-flow instrument demonstrates that the establishment of this thermodynamic equilibrium becomes a very slow process at elevated pH, indicative of a pH-gating mechanism. The final level of blue di-semiquinone formation is found to be pH independent. Stopped-flow experiments using excess NADPH over CPR provide evidence that both pH and solvent significantly influence the kinetic exposure of the blue di-semiquinone intermediate, yet the observed rate constants are essentially pH independent. Thus, the kinetic pH-gating mechanism under stoichiometric conditions is of no significant kinetic relevance for four-electron reduction, but rather modulates the observed semiquinone absorbance at 600 nm in a pH-dependent manner. The use of proton inventory experiments and primary kinetic isotope effects are described as kinetic tools to disentangle the intricate pH-dependent kinetic mechanism in CPR. Our analysis of the pH and isotope dependence in human CPR reveals previously hidden complexity in the mechanism of electron transfer in this complex flavoprotein.  相似文献   
116.
Many heterotrophic bacteria have the ability to make polyhedral structures containing metabolic enzymes that are bounded by a unilamellar protein shell (metabolosomes or enterosomes). These bacterial organelles contain enzymes associated with a specific metabolic process (e.g. 1,2-propanediol or ethanolamine utilization). We show that the 21 gene regulon specifying the pdu organelle and propanediol utilization enzymes from Citrobacter freundii is fully functional when cloned in Escherichia coli, both producing metabolosomes and allowing propanediol utilization. Genetic manipulation of the level of specific shell proteins resulted in the formation of aberrantly shaped metabolosomes, providing evidence for their involvement as delimiting entities in the organelle. This is the first demonstration of complete recombinant metabolosome activity transferred in a single step and supports phylogenetic evidence that the pdu genes are readily horizontally transmissible. One of the predicted shell proteins (PduT) was found to have a novel Fe-S center formed between four protein subunits. The recombinant model will facilitate future experiments establishing the structure and assembly of these multiprotein assemblages and their fate when the specific metabolic function is no longer required.  相似文献   
117.
118.
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号