首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   10篇
  2021年   6篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   5篇
  2015年   5篇
  2014年   4篇
  2013年   3篇
  2012年   6篇
  2011年   7篇
  2010年   4篇
  2009年   3篇
  2008年   8篇
  2007年   8篇
  2006年   5篇
  2005年   10篇
  2004年   6篇
  2003年   8篇
  2002年   4篇
  2001年   5篇
  2000年   8篇
  1999年   2篇
  1995年   1篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
排序方式: 共有125条查询结果,搜索用时 93 毫秒
81.
Mast cell responses are influenced by a diverse array of environmental factors, but little is known about the effect of genetic background. In this study, we report that 129/Sv mice had high levels of circulating IgE, increased expression of the high-affinity receptor for IgE (Fc epsilonRI), and greater sensitivity to anaphylaxis when compared with C57BL/6 mice. Bone marrow-derived mast cells (BMMCs) from 129/Sv mice showed more robust degranulation upon the engagement of Fc epsilonRI. Deficiency of the Src family kinase Lyn enhanced degranulation in 129/Sv BMMCs but inhibited this response in C57BL/6 cells. C57BL/6 lyn(-/-) BMMCs had reduced expression of the Src family kinase Fyn, and increasing its expression markedly enhanced degranulation. In human mast cells the silencing of Lyn or Fyn expression resulted in hyperdegranulation or hypodegranulation, respectively. The findings demonstrate a genetic influence on the extent of a mast cell's response and identify Fyn kinase as a contributory determinant.  相似文献   
82.
Phosphoenolpyruvate carboxylase (PEPC; EC4.1.1.31) plays a key role during C(4) photosynthesis. The enzyme is activated by metabolites such as glucose-6-phosphate and inhibited by malate. This metabolite sensitivity is modulated by the reversible phosphorylation of a conserved serine residue near the N terminus in response to light. The phosphorylation of PEPC is modulated by a protein kinase specific to PEPC (PEPC-PK). To explore the role PEPC-PK plays in the regulation of C(4) photosynthetic CO(2) fixation, we have transformed Flaveria bidentis (a C(4) dicot) with antisense or RNA interference constructs targeted at the mRNA of this PEPC-PK. We generated several independent transgenic lines where PEPC is not phosphorylated in the light, demonstrating that this PEPC-PK is essential for the phosphorylation of PEPC in vivo. Malate sensitivity of PEPC extracted from these transgenic lines in the light was similar to the malate sensitivity of PEPC extracted from darkened wild-type leaves but greater than the malate sensitivity observed in PEPC extracted from wild-type leaves in the light, confirming the link between PEPC phosphorylation and the degree of malate inhibition. There were, however, no differences in the CO(2) and light response of CO(2) assimilation rates between wild-type plants and transgenic plants with low PEPC phosphorylation, showing that phosphorylation of PEPC in the light is not essential for efficient C(4) photosynthesis for plants grown under standard glasshouse conditions. This raises the intriguing question of what role this complexly regulated reversible phosphorylation of PEPC plays in C(4) photosynthesis.  相似文献   
83.

Objectives

GLP-1 improves hyperglycemia, and it has been reported to have favorable effects on atherosclerosis. However, it has not been fully elucidated whether GLP-1 is able to improve endothelial function in patients with type 2 diabetes. Therefore, we investigated the efficacy of the GLP-1 analogue, liraglutide on endothelial function and glycemic metabolism compared with insulin glargine therapy.

Materials and Methods

In this multicenter, prospective randomized parallel-group comparison study, 31 diabetic outpatients (aged 60.3 ± 10.3 years with HbA1c levels of 8.6 ± 0.8%) with current metformin and/or sulfonylurea treatment were enrolled and randomly assigned to receive liraglutide or glargine therapy once daily for 14 weeks. Flow mediated dilation (FMD), a comprehensive panel of hemodynamic parameters (Task Force Monitor), and serum metabolic markers were assessed before and after the treatment period.

Results

A greater reduction (worsening) in %FMD was observed in the glargine group, although this change was not statistically different from the liraglutide group (liraglutide; 5.7 to 5.4%, glargine 6.7 to 5.7%). The augmentation index, C-peptide index, derivatives of reactive oxygen metabolites and BMI were significantly improved in the liraglutide group. Central systolic blood pressure and NT-proBNP also tended to be improved in the liraglutide-treated group, while improvements in HbA1c levels were similar between groups. Cardiac index, blood pressure and most other metabolic parameters were not different.

Conclusions

Regardless of glycemic improvement, early liraglutide therapy did not affect endothelial function but may provide favorable effects on beta-cell function and cardioprotection in type 2 diabetics without advanced atherosclerosis.

Trial Registration

UMIN Clinical Trials Registry System as trial ID UMIN000005331.  相似文献   
84.
85.
86.
Orthodontic treatment induces various biological responses, including tooth movement and remodeling of alveolar bone. Although some studies have investigated the contribution of orthodontic procedures to changes in saliva conditions, little is known about the effects of different treatment durations on the saliva proteome. To identify the discriminating protein profiles in unstimulated whole saliva of orthodontic patients with different treatment durations, we used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) combined with magnetic bead, and peptide mass fingerprints were created by scanning MS signals. Saliva samples from 40 patients (10 in each of four groups: the group without an appliance and groups under treatment for 2, 7, and 12 months) were analyzed. The results showed eight mass peaks with significant differences. Furthermore, mass peak intensities at proteins 1817.7, 2010.7, 2744 and 2710.2 Da represented a steady time-dependent increasing trend, whereas protein 4134 Da exhibited a decreasing tendency. Differential expression of the peptidome profile also occurred in the multiple comparisons, and we established a fitting model. Thus, the potential discriminating biomarkers investigated in this study reflected the complicated changes in periodontal tissues during orthodontic treatment and indicated dynamic interactions between orthodontic treatment and the saliva proteome. The results provide novel insights into alterations in salivary proteins due to different orthodontic treatment durations and may lead to the development of a therapeutic monitoring strategy for orthodontics.  相似文献   
87.
Despite the known abnormalities of cardiac function in patients with overt non-insulin dependent diabetes mellitus (NIDDM) the temporal changes of coronary capillary network remodeling leading to potential microcirculatory dysfunction have not been elucidated. To this end, left ventricular subendocardial capillary network of Otsuka Long-Evans Tokushima Fatty (OLETF) rats, characterized by hypertension, obesity, hyperglycemia, hyperinsulinemia and mild NIDDM, and control Long-Evans Tokushima (LETO) rats were investigated. Total capillary density in OLETF was significantly higher than that in LETO at 20 weeks, suggesting compensatory improvement of O2 transport at early stages of NIDDM. The increase in capillary density in OLETF was lost at 40 and 60 weeks due to the decreases of intermediate capillary portions and venular capillary portions. Although capillary domain area (area innervated by single capillary) in OLETF was lower than that in LETO at 20 weeks, the values were similar between OLETF and LETO at 40 and 60 weeks, suggesting that adaptive improvement in the capacity for O2 transport with a high perfusion was lost in late stages of NIDDM. Activity of plasma plasminogen activator inhibitor-1 (PAI-1), the major physiologic inhibitor of proteo(fibrino)lysis, in OLETF was higher than that in LETO at 40 and 60 weeks, suggesting that increase of PAI-1 may downregulate compensatory adaptive capillary network remodeling by inhibiting proteolysis and angiogenesis in the cardiac interstitium. Loss of adaptive myocardial microcirculation may therefore contribute to increased vulnerability in ischemic injury and to cardiac dysfunction in NIDDM.  相似文献   
88.
Nitric oxide (NO) has received wide attention as a biological signaling molecule that uses cyclic GMP as a cellular second messenger. Other work has supported roles for cysteine oxidation or nitrosylation as signaling events. Recent studies in bacteria and mammalian cells now point to the existence of at least two other pathways independent of cGMP. For the E. coli SoxR protein, signaling occurs by nitrosylation of its binuclear iron-sulfur clusters, a reaction that is unprecedented in gene activation. In intact cells, these nitrosylated centers are very rapidly replaced by unmodified iron-sulfur clusters, a result that points to the existence of an active repair pathway for this type of protein damage. Exposure of mammalian cells to NO elicits an adaptive resistance that confers elevated resistance of the cells to higher levels of NO. This resistance in many cell types involves the important defense protein heme oxygenase 1, although the mechanism by which this enzyme mediates NO resistance remains unknown. Induction of heme oxygenase in some cell types occurs through the stabilization of its mRNA. NO-induced stabilization of mRNA is mediated by pre-existing proteins and points to the existence of an important new signaling pathway that counteracts the damage and stress exerted by this free radical.  相似文献   
89.
The high affinity IgE Fc receptor (FcepsilonRI) beta chain functions as a signal amplifier and has been linked to atopy, asthma, and allergy. Herein, we report on a previously unrecognized negative regulatory role for the nonconventional beta chain immunoreceptor tyrosine-based activation motif that contains three tyrosine residues (YX5YX3Y). Degranulation and leukotriene production was found to be impaired in cells expressing the mutated FcepsilonRIbeta immunoreceptor tyrosine-based activation motifs FYY, YYF, FYF, and FFF. In contrast, cytokine synthesis and secretion were enhanced in the YFY and FFF mutants. FcepsilonRI phosphorylation and Lyn kinase co-immunoprecipitation was intact in the YFY mutant but was lost in the FYF and FFF mutants. The phosphorylation of Syk, LAT, phospholipase gamma1/2, and Srchomology 2 domain-containing protein phosphatase 2 was intact, whereas the phosphorylation of SHIP-1 was significantly reduced in the YFY mutant cells. The FYF and FFF mutants were defective in phosphorylating all of these molecules. In contrast, the phosphorylation of ERK, p38 MAPK, IkappaB kinase beta (IKKbeta), and nuclear NFkappaB activity was enhanced in the YFY and FFF mutants. These findings show that the FcepsilonRIbeta functions to both selectively amplify (degranulation and leukotriene secretion) and dampen (lymphokine) mast cell effector responses.  相似文献   
90.
The cellular life-span of cultivated human skin epidermis keratinocytes NHEK-F was shown to be extended up to 150% of population doubling levels (PDLs) by repetitive addition with two autooxidation-resistant derivatives of ascorbic acid (Asc), Asc-2-O-phosphate (Asc2P), and Asc-2-O-alpha-glucoside (Asc2G), respectively, but to be not extended with Asc itself. In contrast, hydrogen peroxide (H(2)O(2)) as dilute as 20 microM which was non-cytotoxic to the keratinocytes, or at 60 microM being marginally cytotoxic achieved the cellular longevity, unexpectedly, up to 160 and 120% of PDLs, respectively, being regarded as a hormesis-like stimulatory effect. The lifespan-extended cells that were administered with Asc2P, Asc2G, or 20 microM H(2)O(2) were prevented from senescence-induced symptoms such as PDL-dependent enlargement of a cell size of 14.7 microm finally up to 17.4 microm upon Hayflick's limit-called loss of proliferation ability as estimated with a channelizer, and retained young cell morphological aspects such as thick and compact shape and intense attachment to the culture substratum even upon advanced PDLs, whereas other non-extended cells looked like thin or fibrous shape and large size upon lower PDLs. The PDL-dependent shortening of telomeric DNA of 11.5 kb finally down to 9.12-8.10 kb upon Hayflick's limit was observed in common for each additive-given cells, but was decelerated in the following order: 20 microM H(2)O(2) > Asc2P = Asc2G > 60 microM H(2)O(2) > Asc = no additive, being in accord with the order of cell longevity. Intracellular reactive oxygen species (ROS) was diminished by Asc2P, Asc2G or 20 microM H(2)O(2), but not significantly by Asc or 60 microM H(2)O(2) as estimated by fluorometry using the redox indicator dye CDCFH. There was no appreciable difference among NHEK keratinocytes that were administered with or without diverse additives in terms of telomerase activity per cell, which was 1.40 x 10(4)-4.48 x 10(4) times lower for the keratinocytes than for HeLa cells which were examined as the typical tumor cells. Thus longevity of the keratinocytes was suggested to be achieved by slowdown of age-dependent shortening of telomeric DNA rather than by telomerase; telomeres may suffer from less DNA lesions due to the continuous and thorough repression of intracellular ROS, which was realized either by pro-vitamin C such as Asc2P or Asc2G that exerted an antioxidant ability more persistent than Asc itself or by 20 microM H(2)O(2) which diminished intracellular ROS assumedly through a hormesis-like effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号