首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1798篇
  免费   98篇
  国内免费   1篇
  1897篇
  2022年   9篇
  2021年   16篇
  2020年   10篇
  2019年   11篇
  2018年   15篇
  2017年   9篇
  2016年   22篇
  2015年   42篇
  2014年   45篇
  2013年   153篇
  2012年   80篇
  2011年   70篇
  2010年   39篇
  2009年   38篇
  2008年   71篇
  2007年   80篇
  2006年   77篇
  2005年   68篇
  2004年   71篇
  2003年   76篇
  2002年   58篇
  2001年   58篇
  2000年   78篇
  1999年   64篇
  1998年   22篇
  1997年   18篇
  1996年   16篇
  1995年   16篇
  1994年   12篇
  1993年   17篇
  1992年   44篇
  1991年   44篇
  1990年   43篇
  1989年   52篇
  1988年   38篇
  1987年   44篇
  1986年   24篇
  1985年   30篇
  1984年   15篇
  1983年   14篇
  1982年   21篇
  1981年   10篇
  1979年   22篇
  1978年   15篇
  1977年   18篇
  1976年   16篇
  1975年   14篇
  1974年   9篇
  1971年   9篇
  1969年   8篇
排序方式: 共有1897条查询结果,搜索用时 15 毫秒
41.
While interspecific variation in the temperature response of photosynthesis is well documented, the underlying physiological mechanisms remain unknown. Moreover, mechanisms related to species-dependent differences in photosynthetic temperature acclimation are unclear. We compared photosynthetic temperature acclimation in 11 crop species differing in their cold tolerance, which were grown at 15°C or 30°C. Cold-tolerant species exhibited a large decrease in optimum temperature for the photosynthetic rate at 360 μL L−1 CO2 concentration [Opt (A360)] when growth temperature decreased from 30°C to 15°C, whereas cold-sensitive species were less plastic in Opt (A360). Analysis using the C3 photosynthesis model shows that the limiting step of A360 at the optimum temperature differed between cold-tolerant and cold-sensitive species; ribulose 1,5-bisphosphate carboxylation rate was limiting in cold-tolerant species, while ribulose 1,5-bisphosphate regeneration rate was limiting in cold-sensitive species. Alterations in parameters related to photosynthetic temperature acclimation, including the limiting step of A360, leaf nitrogen, and Rubisco contents, were more plastic to growth temperature in cold-tolerant species than in cold-sensitive species. These plastic alterations contributed to the noted growth temperature-dependent changes in Opt (A360) in cold-tolerant species. Consequently, cold-tolerant species were able to maintain high A360 at 15°C or 30°C, whereas cold-sensitive species were not. We conclude that differences in the plasticity of photosynthetic parameters with respect to growth temperature were responsible for the noted interspecific differences in photosynthetic temperature acclimation between cold-tolerant and cold-sensitive species.The temperature dependence of leaf photosynthetic rate shows considerable variation between plant species and with growth temperature (Berry and Björkman, 1980; Cunningham and Read, 2002; Hikosaka et al., 2006). Plants native to low-temperature environments and those grown at low temperatures generally exhibit higher photosynthetic rates at low temperatures and lower optimum temperatures, compared with plants native to high-temperature environments and those grown at high temperatures (Mooney and Billings, 1961; Slatyer, 1977; Berry and Björkman, 1980; Sage, 2002; Salvucci and Crafts-Brandner, 2004b). For example, the optimum temperature for photosynthesis differs between temperate evergreen species and tropical evergreen species (Hill et al., 1988; Read, 1990; Cunningham and Read, 2002). Such differences have been observed even among ecotypes of the same species (Björkman et al., 1975; Pearcy, 1977; Slatyer, 1977).Temperature dependence of the photosynthetic rate has been analyzed using the biochemical model proposed by Farquhar et al. (1980). This model assumes that the photosynthetic rate (A) is limited by either ribulose 1,5-bisphosphate (RuBP) carboxylation (Ac) or RuBP regeneration (Ar). The optimum temperature for photosynthetic rate in C3 plants is thus potentially determined by (1) the temperature dependence of Ac, (2) the temperature dependence of Ar, or (3) both, at the colimitation point of Ac and Ar (Fig. 1; Farquhar and von Caemmerer, 1982; Hikosaka et al., 2006).Open in a separate windowFigure 1.A scheme illustrating the shift in the optimum temperature for photosynthesis depending on growth temperature. Based on the C3 photosynthesis model, the A360 (white and black circles) is limited by Ac (solid line) or Ar (broken line). The optimum temperature for the photosynthetic rate is potentially determined by temperature dependence of Ac (A), temperature dependence of Ar (B), or the intersection of the temperature dependences of Ac and Ar (C). When the optimum temperature for the photosynthetic rate shifts to a higher temperature, there are also three possibilities determining the optimum temperature: temperature dependence of Ac (D), temperature dependence of Ar (E), or the intersection of the temperature dependences of Ac and Ar (F). Especially in the case that the optimum temperature is determined by the intersection of the temperature dependences of Ac and Ar, the optimum temperature can shift by changes in the balance between Ac and Ar even when the optimum temperatures for these two partial reactions do not change.In many cases, the photosynthetic rate around the optimum temperature is limited by Ac, and thus the temperature dependence of Ac determines the optimum temperature for the photosynthetic rate (Hikosaka et al., 1999, 2006; Yamori et al., 2005, 2006a, 2006b, 2008; Sage and Kubien, 2007; Sage et al., 2008). As the temperature increases above the optimum, Ac is decreased by increases in photorespiration (Berry and Björkman, 1980; Jordan and Ogren, 1984; von Caemmerer, 2000). Furthermore, it has been suggested that the heat-induced deactivation of Rubisco is involved in the decrease in Ac at high temperature (Law and Crafts-Brandner, 1999; Crafts-Brandner and Salvucci, 2000; Salvucci and Crafts-Brandner, 2004a; Yamori et al., 2006b). Numerous previous studies have shown changes in the temperature dependence of Ac with growth temperature (Hikosaka et al., 1999; Bunce, 2000; Yamori et al., 2005). Also, the temperature sensitivity of Rubisco deactivation may differ between plant species (Salvucci and Crafts-Brandner, 2004b) and with growth temperature (Yamori et al., 2006b), which may explain variation in the optimum temperature for photosynthesis (Fig. 1, A and D).Ar is more responsive to temperature than Ac and often limits photosynthesis at low temperatures (Hikosaka et al., 1999, 2006; Sage and Kubien, 2007; Sage et al., 2008). Recently, several researchers indicated that Ar limits the photosynthetic rate at high temperature (Schrader et al., 2004; Wise et al., 2004; Cen and Sage, 2005; Makino and Sage, 2007). They suggested that the deactivation of Rubisco at high temperatures is not the cause of decreased Ac but a result of limitation by Ar. However, it remains unclear whether limitation by Ar is involved in the variation in the optimum temperature for the photosynthetic rate (Fig. 1, B and E).A shift in the optimum temperature for photosynthesis can result from changes in the balance between Ar and Ac, even when the optimum temperatures for these two partial reactions do not change (Fig. 1, C and F; Farquhar and von Caemmerer, 1982). The balance between Ar and Ac has been shown to change depending on growth temperature (Hikosaka et al., 1999; Hikosaka, 2005; Onoda et al., 2005a; Yamori et al., 2005) and often brings about a shift in the colimitation temperature of Ar and Ac. Furthermore, recent studies have shown that plasticity in this balance differs among species or ecotypes (Onoda et al., 2005b; Atkin et al., 2006; Ishikawa et al., 2007). Plasticity in this balance could explain interspecific variation in the plasticity of photosynthetic temperature dependence (Farquhar and von Caemmerer, 1982; Hikosaka et al., 2006), although there has been no evidence in the previous studies that the optimum temperature for photosynthesis occurs at the colimitation point of Ar and Ac.Temperature tolerance differs between species and, with growth temperature, even within species from the same functional group (Long and Woodward, 1989). Bunce (2000) indicated that the temperature dependences of Ar and Ac to growth temperature were different between species from cool and warm climates and that the balance between Ar and Ac was independent of growth temperature for a given plant species. However, it was not clarified what limited the photosynthetic rate or what parameters were important in temperature acclimation of photosynthesis. Recently, we reported that the extent of temperature homeostasis of leaf respiration and photosynthesis, which is assessed as a ratio of rates measured at their respective growth temperatures, differed depending on the extent of the cold tolerance of the species (Yamori et al., 2009b). Therefore, comparisons of several species with different cold tolerances would provide a new insight into interspecific variation of photosynthetic temperature acclimation and their underlying mechanisms. In this study, we selected 11 herbaceous crop species that differ in their cold tolerance (Yamori et al., 2009b) and grew them at two contrasting temperatures, conducting gas-exchange analyses based on the C3 photosynthesis model (Farquhar et al., 1980). Based on these results, we addressed the following key questions. (1) Does the plasticity in photosynthetic temperature acclimation differ between cold-sensitive and cold-tolerant species? (2) Does the limiting step of photosynthesis at several leaf temperatures differ between plant species and with growth temperature? (3) What determines the optimum temperature for the photosynthetic rate among Ac, Ar, and the intersection of the temperature dependences of Ac and Ar?  相似文献   
42.
CAPRICE (CPC), a small, R3-type Myb-like protein, is a positive regulator of root hair development in Arabidopsis. Cell-to-cell movement of CPC is important for the differentiation of epidermal cells into trichoblasts (root hair cells). CPC is transported from atrichoblasts (hairless cells), where it is expressed, to trichoblasts, and generally accumulates in their nuclei. Using truncated versions of CPC fused to GFP, we identified a signal domain that is necessary and sufficient for CPC cell-to-cell movement. This domain includes the N-terminal region and a part of the Myb domain. Amino acid substitution experiments indicated that W76 and M78 in the Myb domain are critical for targeted transport, and that W76 is crucial for the nuclear accumulation of CPC:GFP. To evaluate the tissue-specificity of CPC movement, CPC:GFP was expressed in the stele using the SHR promoter and in trichoblasts using the EGL3 promoter. CPC:GFP was able to move from trichoblasts to atrichoblasts but could not exit from the stele, suggesting the involvement of tissue-specific regulatory factors in the intercellular movement of CPC. Analyses with a secretion inhibitor, Brefeldin A, and with an rhd3 mutant defective in the secretion process in root epidermis suggested that intercellular CPC movement is mediated through plasmodesmata. Furthermore, the fusion of CPC to tandem-GFPs defined the capability of CPC to increase the size exclusion limit of plasmodesmata.  相似文献   
43.
The large-scale mouse mutagenesis with ENU has provided forward-genetic resources for functional genomics. The frozen sperm archive of ENU-mutagenized generation-1 (G1) mice could also provide a "mutant mouse library" that allows us to conduct reverse genetics in any particular target genes. We have archived frozen sperm as well as genomic DNA from 9224 G1 mice. By genome-wide screening of 63 target loci covering a sum of 197 Mbp of the mouse genome, a total of 148 ENU-induced mutations have been directly identified. The sites of mutations were primarily identified by temperature gradient capillary electrophoresis method followed by direct sequencing. The molecular characterization revealed that all the identified mutations were point mutations and mostly independent events except a few cases of redundant mutations. The base-substitution spectra in this study were different from those of the phenotype-based mutagenesis. The ENU-based gene-driven mutagenesis in the mouse now becomes feasible and practical.  相似文献   
44.

Background

YWHAE is a possible susceptibility gene for schizophrenia that encodes 14-3-3epsilon, a Disrupted-in-Schizophrenia 1 (DISC1)-interacting molecule, but the effect of variation in its genotype on brain morphology remains largely unknown.

Methods

In this voxel-based morphometric magnetic resonance imaging study, we conducted whole-brain analyses regarding the effects of YWHAE single-nucleotide polymorphisms (SNPs) (rs28365859, rs11655548, and rs9393) and DISC1 SNP (rs821616) on gray matter volume in a Japanese sample of 72 schizophrenia patients and 86 healthy controls. On the basis of a previous animal study, we also examined the effect of rs28365859 genotype specifically on hippocampal volume.

Results

Whole-brain analyses showed no significant genotype effect of these SNPs on gray matter volume in all subjects, but we found significant genotype-by-diagnosis interaction for rs28365859 in the left insula and right putamen. The protective C allele carriers of rs28365859 had a significantly larger left insula than the G homozygotes only for schizophrenia patients, while the controls with G allele homozygosity had a significantly larger right putamen than the C allele carriers. The C allele carriers had a larger right hippocampus than the G allele homozygotes in schizophrenia patients, but not in healthy controls. No significant interaction was found between rs28365859 and DISC1 SNP on gray matter volume.

Conclusions

These different effects of the YWHAE (rs28365859) genotype on brain morphology in schizophrenia and healthy controls suggest that variation in its genotype might be, at least partly, related to the abnormal neurodevelopment, including in the limbic regions, reported in schizophrenia. Our results also suggest its specific role among YWHAE SNPs in the pathophysiology of schizophrenia.  相似文献   
45.
DNA fragments containing argK-tox clusters and their flanking regions were cloned from the chromosomes of Pseudomonas syringae pathovar (pv.) actinidiae strain KW-11 (ACT) and P. syringae pv. phaseolicola strain MAFF 302282 (PHA), and then their sequences were determined. Comparative analysis of these sequences and the sequences of P. syringae pv. tomato DC3000 (TOM) (Buell et al., Proc Natl Acad Sci USA 100:10181–10186, 2003) and pv. syringae B728a (SYR) (Feil et al., Proc Natl Acad Sci USA 102:11064–11069, 2005) revealed that the chromosomal backbone regions of ACT and TOM shared a high similarity to each other but presented a low similarity to those of PHA and SYR. Nevertheless, almost-identical DNA regions of about 38 kb were confirmed to be present on the chromosomes of both ACT and PHA, which we named “tox islands.” The facts that the GC content of such tox islands was 6% lower than that of the chromosomal backbone regions of P. syringae, and that argK-tox clusters, which are considered to be of exogenous origin based on our previous studies (Sawada et al., J Mol Evol 54:437–457, 2002), were confirmed to be contained within the tox islands, suggested that the tox islands were an exogenous, mobile genetic element inserted into the chromosomes of P. syringae strains. It was also predicted that the tox islands integrated site-specifically into the homologous sites of the chromosomes of ACT and PHA in the same direction, respectively, wherein 34 common gene coding sequences (CDSs) existed. Furthermore, at the left end of the tox islands were three CDSs, which encoded polypeptides and had similarities to the members of the tyrosine recombinase family, suggesting that these putative site-specific recombinases were involved in the recent horizontal transfer of tox islands. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users.  相似文献   
46.
Mature leaves of shade species exhibit lower respiratory rates than those of sun species. To elucidate the mechanism underlying different respiratory rates between sun and shade species, we examined respiratory properties of leaves in Spinacia oleracea L., a sun species, and Alocasia odora (Lodd.) Spach, a shade species, with special reference to changes in the respiratory rate throughout the night. In S. oleracea , rates of both CO2 efflux and O2 uptake decreased with time during the night, whereas in A. odora both rates were virtually constant at lower levels. The rates of O2 uptake in S . oleracea increased upon addition of sucrose, and the rates attained were virtually identical throughout the night. However, the addition of an uncoupler [carbonyl cyanide p -(trifluoromethoxy)-phenylhydrazone; FCCP] did not alter the rates. In contrast, the rates of O2 uptake in A. odora were enhanced by the addition of FCCP, but not by sucrose. The concentrations of carbohydrates in the tissue decreased throughout the night in both species and the ATP/ADP ratio was always greater in A. odora. These results indicate that, in S. oleracea , the availability of respiratory substrate determines the respiratory rate, while the low respiratory rate in A. odora is ascribed to its low demand for ATP.  相似文献   
47.
48.
This study aimed to determine the accuracy of segmental body composition variables estimated by single-frequency BIA with 8-point contact electrodes (SF-BIA8), compared with dual-energy X-ray absorptiometry (DXA). Subjects were 72 obese Japanese adults (43 males and 29 females) aged 30 to 66 years. Segmental body composition variables (fat free mass: FFM, fat mass: FM, and percent fat mass: %FAT) were measured by these techniques. The correlations between impedance values and FFM measured by DXA were calculated. To examine the consistency in predicted values (SF-BIA8) with the reference (DXA), significant mean differences were tested by t-test and the degree of the difference was assessed by effect size. Correlations between the reference and predicted values were calculated. Additionally, the standard error of estimation (SEE) when estimating the reference from the predictor and the relative value of the SEE to the mean value of the DXA measurement (%SEE) were calculated. Systematic error was examined by Bland-Altman plots. High correlations were found between impedance and FFM measured by SF-BIA8. FFM in the extremities showed high correlations with the reference values, but systematic error was found. SF-BIA8 tended to overestimate FFM in the trunk. The consistencies in %FAT and FM with the reference value are inferior to those for FFM, and SEE values in %FAT and FM were greater than those for FFM. The accuracy of the estimated values in the trunk (FFM, %FAT, and FM) are inferior to those of the total body and extremities.  相似文献   
49.
Characterization of WiDr: A human colon carcinoma cell line   总被引:1,自引:0,他引:1  
Summary We describe the establishment and characterization of WiDr, a cell line derived from a human colon carcinoma. It produces carcinoembryonic antigen in culture, and has a doubling time of 15 hr with plating efficiency of 51%. The HLA antigenic profile and the allozyme genetic signature (composed of eight gene-enzyme systems) of WiDr cells are different from those of HeLa cells. Furthermore, WiDr cells possess three marker chromosomes, again distinct from the HeLa marker chromosomes. Finally, it is highly tumorigenic in four different xenogeneic animal models. Based on these studies, WiDr represents a useful model cell line for tumor cell biology investigations.  相似文献   
50.
Much evidence indicates that various naturally occurring compounds have an anti-cancer effect, but the detailed mechanisms are not well understood. In this study, we selected anti-cancer phytochemicals such as epigallocatechin-3-gallate (EGCG), resveratrol (RES) and α-mangostin (α-M), all of which are well-characterized chemopreventive agents. We sought to elucidate the mechanism of their anti-cancer effects and the synergistic effects obtained by combined treatment with the anti-cancer drug 5-fluorouracil (5-FU) in three human colon cancer cell lines. The numbers of viable cells were consistently decreased by the treatment with EGCG, RES or α-M at more than 10 μM in all three cell lines tested. All compounds mainly induced apoptosis and suppressed the PI3K/Akt signaling pathway. Additionally, α-M, which had the greatest PI3K/Akt-suppressing activity, also suppressed MAP kinase (MAPK)/Erk1/2 signaling. Importantly, the combination treatment with RES and 5-FU induced a remarkably synergistic enhancement of growth inhibition and apoptosis through the additional suppression of the MAPK/Erk1/2 signaling pathway in colon cancer DLD-1 cells. Interestingly, RES increased the intracellular expression level of miR-34a, which down-regulated the target gene E2F3 and its downstream Sirt1, resulting in growth inhibition. These findings indicate that these compounds functioned as chemosensitizers when combined with anti-cancer drugs through the modulation of apoptotic and growth-related signaling pathways. Also, RES exerted its anti-cancer activity in part through a newly defined mechanism, i.e., the miR-34a/E2F3/Sirt1 cascade.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号