首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   3篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   4篇
  2013年   6篇
  2012年   11篇
  2011年   6篇
  2010年   4篇
  2008年   8篇
  2007年   7篇
  2006年   11篇
  2005年   8篇
  2004年   9篇
  2003年   8篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1987年   2篇
  1984年   2篇
  1982年   1篇
排序方式: 共有111条查询结果,搜索用时 15 毫秒
101.
The water solubility of curdlan was enhanced by partial sulfation at O-6. Circular dichroism measurements suggest that the sulfated curdlan with the degree of substitution (DS) from 0 to 8.7 mol% forms macromolecular complexes with polycytidylic acid (poly(C)). Although the thermal stability of the complexes decreased with increase in DS, this could be overlapped by addition of NaCl in the concentration above that of serum. The results clearly indicate that the drawback arising from the electrostatic repulsion between the anionic charges can be partially compensated by the presence of salt. Furthermore, the polynucleotide chain complexed with the sulfated curdlan was protected from the enzymatic hydrolysis, corroborating the assumption that the sulfated curdlan has an ability to bind poly(C).  相似文献   
102.
Inhibition of polyglutamine-induced protein aggregation could provide treatment options for polyglutamine diseases such as Huntington disease. Here we showed through in vitro screening studies that various disaccharides can inhibit polyglutamine-mediated protein aggregation. We also found that various disaccharides reduced polyglutamine aggregates and increased survival in a cellular model of Huntington disease. Oral administration of trehalose, the most effective of these disaccharides, decreased polyglutamine aggregates in cerebrum and liver, improved motor dysfunction and extended lifespan in a transgenic mouse model of Huntington disease. We suggest that these beneficial effects are the result of trehalose binding to expanded polyglutamines and stabilizing the partially unfolded polyglutamine-containing protein. Lack of toxicity and high solubility, coupled with efficacy upon oral administration, make trehalose promising as a therapeutic drug or lead compound for the treatment of polyglutamine diseases. The saccharide-polyglutamine interaction identified here thus provides a new therapeutic strategy for polyglutamine diseases.  相似文献   
103.
The essential trace element zinc is important for all living organisms. Zinc functions not only as a nutritional factor, but also as a second messenger. However, the effects of intracellular zinc on the B cell-receptor (BCR) signaling pathway remain poorly understood. Here, we present data indicating that the increase in intracellular zinc level induced by ZIP9/SLC39A9 (a ZIP Zrt-/Irt-like protein) plays an important role in the activation of Akt and Erk in response to BCR activation. In DT40 cells, the enhancement of Akt and Erk phosphorylation following BCR activation requires intracellular zinc. To clarify this event, we used chicken ZnT5/6/7-gene-triple-knockout DT40 (TKO) cells and chicken Zip9-knockout DT40 (cZip9KO) cells. The levels of Akt and ERK phosphorylation significantly decreased in cZip9KO cells. In addition, the enzymatic activity of protein tyrosine phosphatase (PTPase) increased in cZip9KO cells. These biochemical events were restored by overexpressing the human Zip9 (hZip9) gene. Moreover, we found that the increase in intracellular zinc level depends on the expression of ZIP9. This observation is in agreement with the increased levels of Akt and Erk phosphorylation and the inhibition of total PTPase activity. We concluded that ZIP9 regulates cytosolic zinc level, resulting in the enhancement of Akt and Erk phosphorylation. Our observations provide new mechanistic insights into the BCR signaling pathway underlying the regulation of intracellular zinc level by ZIP9 in response to the BCR activation.  相似文献   
104.
Zinc (Zn) is an essential trace element with multiple regulatory functions, involving insulin synthesis, secretion, signaling and glucose transport. Since 2000, we have proposed that Zn complexes with different coordination environments exhibit high insulinomimetic and antidiabetic activities in type 2 diabetic animals. However, the molecular mechanism for the activities is still unsolved. The purpose of this study was to reveal the molecular mechanism of several types of Zn complexes in 3T3-L1 adipocytes, with respect to insulin signaling pathway. Obtained results shows that bis(1-oxy-2-pyridine-thiolato)Zn(II), Zn(opt)2, with S(2)O(2) coordination environment induced most strongly Akt/protein kinase B (Akt/PKB) phosphorylation, in which the optimal phosphorylation was achieved at a concentration of 25 microM, and this Zn(opt)2-induced Akt/PKB phosphorylation was inhibited by wortmannin at 100 nM. Further, the phosphorylation was maximal at 5-10 min stimulation, in agreement with the Zn uptake which was also maximal at 5-10 min stimulation. The Akt/PKB phosphorylation was in concentration- and time-dependent manners. Zn(opt)2 was also capable to translocate GLUT4 protein to the plasma membrane. We conclude that Zn(opt)2 was revealed to exhibit both insulinomimetic and antidiabetic activities by activating insulin signaling cascade through Akt/PKB phosphorylation, which in turn caused the GLUT4 translocation from the cytosol to the plasma membrane.  相似文献   
105.

Purpose

The physiological role of vasomotion, rhythmic oscillations in vascular tone or diameter, and its underlying mechanisms are unknown. We investigated the characteristics of brachial artery vasomotion in patients with ischemic heart disease (IHD).

Methods

We performed a retrospective study of 37 patients with IHD. Endothelial function was assessed using flow-mediated dilation (FMD), and power spectral analysis of brachial artery diameter oscillations during FMD was performed. Frequency-domain components were calculated by integrating the power spectrums in three frequency bands (in ms2) using the MemCalc (GMS, Tokyo, Japan): very-low frequency (VLF), 0.003–0.04 Hz; low frequency (LF), 0.04–0.15 Hz; and high frequency (HF), 0.15–0.4 Hz. Total spectral power (TP) was calculated as the sum of all frequency bands, and each spectral component was normalized against TP.

Results

Data revealed that HF/TP closely correlated with FMD (r = −0.33, p = 0.04), whereas VLF/TP and LF/TP did not. We also explored the relationship between elevated C-reactive protein (CRP) levels and vasomotion. HF/TP was significantly increased in subjects with high CRP levels (CRP;>0.08 mg/dL) compared with subjects with low CRP levels (0.052±0.026 versus 0.035±0.022, p<0.05). The HF/TP value closely correlated with CRP (r = 0.24, p = 0.04), whereas the value of FMD did not (r = 0.023, p = 0.84). In addition, elevated CRP levels significantly increased the value of HF/TP after adjustment for FMD and blood pressure (β = 0.33, p<0.05).

Conclusion

The HF component of brachial artery diameter oscillation during FMD measurement correlated well with FMD and increased in the presence of elevated CRP levels in subjects with IHD.  相似文献   
106.
107.
When mature adipocytes are subjected to an in vitro dedifferentiation strategy referred to as ceiling culture, these mature adipocytes can revert to a more primitive phenotype and gain cell proliferative ability. We refer to these cells as dedifferentiated fat (DFAT) cells. In the present study, we examined the multilineage differentiation potential of DFAT cells. DFAT cells obtained from adipose tissues of 18 donors exhibited a fibroblast-like morphology and sustained high proliferative activity. Flow cytometric analysis revealed that DFAT cells comprised a highly homogeneous cell population compared with that of adipose-derived stem/stromal cells (ASCs), although the cell-surface antigen profile of DFAT cells was very similar to that of ASCs. DFAT cells lost expression of mature adipocytes marker genes but retained or gained expression of mesenchymal lineage-committed marker genes such as peroxisome proliferator-activated receptor gamma (PPARgamma), RUNX2, and SOX9. In vitro differentiation analysis revealed that DFAT cells could differentiate into adipocytes, chondrocytes, and osteoblasts under appropriate culture conditions. DFAT cells also formed osteoid matrix when implanted subcutaneously into nude mice. In addition, clonally expanded porcine DFAT cells showed the ability to differentiate into multiple mesenchymal cell lineages. These results indicate that DFAT cells represent a type of multipotent progenitor cell. The accessibility and ease of culture of DFAT cells support their potential application for cell-based therapies.  相似文献   
108.
Vitamin E and the Peroxidizability of Erythrocyte Membranes in Neonates   总被引:1,自引:0,他引:1  
We showed the increased susceptibility of neonatal biomembranes to oxidation by a kinetic analysis using an azo compound as a free-radical initiator and red blood cell (RBC) ghosts as a model membrane. When the RBC ghosts were oxidized, oxygen consumption was suppressed during the induction period in which membrane tocopherol was consumed at a constant rate, while increased oxygen uptake was observed after the tocopherol was exhausted. The total tocopherol content was similar in cord, maternal, and adult RBC ghosts, and there were no differences in the induction period (t/inh) among the three types of ghosts. While the oxygen uptake rate during the induction period (Rinh) was similar in cord and adult ghosts, the rate in the subsequent phase (Rp) was considerably faster in the cord ghosts. Fatty acid analysis in the membrane lipids showed that the active bisallylic hydrogen (active H) content was greater in cord ghosts than in adult ghosts. The active H content closely correlated with the Rp, but did not with the Rinh. The kinetic chain length (KCL), i.e., the ratio of the rate of propagation to that of initiation, was calculated from Rp and tocopherol consumption rate and KCL values were higher in cord ghosts than in adult ghosts. The faster Rp and the higher KCL of the cord ghosts were attributable to a greater active H content rather than to the tocopherol content.  相似文献   
109.
We previously reported new zinc complexes of allixin [bis(allixinato)zinc] and its derivative bis(thioallixin-N-methyl)zinc that demonstrated excellent antidiabetic activity in type 2 diabetic mellitus KKA(y) mice. However, the molecular mechanism of these complexes is not fully understood. Thus, we attempted to reveal the intracellular mechanism of these complexes in 3T3-L1 adipocytes. Both zinc complexes induced Akt/protein kinase B (Akt/PKB) phosphorylation. The phosphorylation of Akt/PKB enhanced glucose transporter 4 translocation to the plasma membrane; this in turn enhanced the glucose utilization in a dose- and time-dependent manner. Glucose utilization by the complexes depended on the intracellular zinc concentration. Moreover, zinc complexes suppressed the cyclic AMP dependent protein kinase mediated phosphorylation of hormone-sensitive lipase (HSL), leading to the inhibition of free fatty acid release from the 3T3-L1 adipocytes. Such responses were inhibited by wortmannin, suggesting that the suppression of HSL by zinc complexes was dependent in the phosphoinositide 3-kinase-Akt/PKB signaling cascade. On the basis of these results, we proposed that both zinc complexes activated the Akt/PKB-mediated insulin-signaling pathway and improved both glucose utilization and lipid metabolism.  相似文献   
110.
Tissue resident mononuclear phagocytes (Mophs), comprising monocytes, macrophages, and dendritic cells (DCs), play important roles under physiological and pathological conditions. The presence of these cells in the kidney has been known for decades, and studies of renal Mophs (rMophs) are currently underway. Since no unified procedure has been identified to isolate rMophs, results of flow cytometric analysis of rMophs have been inconsistent among studies. We therefore first evaluated a preparative method for rMophs using collagenous digestion. The yield of rMophs greatly increased after the collagenase digestion. In particular, F4/80high rMophs, which were positive for CD11c, a specific marker of DCs, dramatically increased. In addition, since neutrophils are sometimes mixed among rMophs in the analysis of flow cytometry, we established a gating strategy for eliminating neutrophils. To determine the contribution of rMophs to the development of autoimmune nephritis, we analyzed an experimental model of autoimmune nephritis that was applied to Shp1 conditional knockout mice (Shp1 CKO). This knockout strain is generated by crossing a mouse line carrying floxed Shp1 allele to mice expressing Cre recombinase under the control of the CD11c promoter. Shp1 CKO therefore specifically lack Shp1 in cells expressing CD11c. As a result, Shp1 CKO were susceptible to that experimental glomerulonephritis and F4/80high rMophs of Shp1 CKO increased dramatically. In conclusion, our preparative methods for collagenase digestion and gating strategy for neutrophils are necessary for the analysis of rMophs, and Shp1 suppresses the development of autoimmune nephritis through the control of rMophs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号