首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   31篇
  国内免费   1篇
  2022年   2篇
  2021年   2篇
  2019年   2篇
  2018年   3篇
  2016年   9篇
  2015年   5篇
  2014年   6篇
  2013年   12篇
  2012年   11篇
  2011年   13篇
  2010年   9篇
  2009年   8篇
  2008年   12篇
  2007年   13篇
  2006年   13篇
  2005年   11篇
  2004年   6篇
  2003年   11篇
  2002年   13篇
  2001年   9篇
  2000年   13篇
  1999年   6篇
  1998年   6篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   5篇
  1993年   2篇
  1992年   5篇
  1991年   6篇
  1990年   5篇
  1989年   4篇
  1987年   5篇
  1986年   5篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1980年   7篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
  1961年   1篇
  1960年   1篇
  1957年   1篇
  1948年   1篇
排序方式: 共有279条查询结果,搜索用时 31 毫秒
221.
The dhlA gene of Xanthobacter autotrophicus GJ10 encodes a dehalogenase which hydrolyzes dihalo- alkanes, such as 1, 2-dichloroethane (DCE), to a halogenated alcohol and an inorganic halide (Janssen et al. 1994, Annu. Rev. Microbiol. 48, 163-191). In Xanthobacter, these alcohols are further catabolized by alcohol and aldehyde dehydrogenase activities, and by the product of the dhlB gene to a second halide and a hydroxyacid. The intermediate halogenated alcohols and, in particular, the aldehydes are more toxic than the haloalkane substrates or the pathway products. We show here that plants, including Arabidopsis, tobacco, oil seed rape and rice, do not express detectable haloalkane dehalogenase activities, and that wild-type Arabidopsis grows in the presence of DCE. In contrast, DCE applied as a volatile can be used to select on plates or in soil transgenic Arabidopsis which express dhlA. The dhlA marker therefore provides haloalkane dehalogenase reporter activity and substrate dependent negative selection in transgenic plants.  相似文献   
222.
Marine heatwaves are extreme events that can have profound and lasting impacts on marine species. Field observations have shown seaweeds to be highly susceptible to marine heatwaves, but the physiological drivers of this susceptibility are poorly understood. Furthermore, the effects of marine heatwaves in conjunction with ocean warming and acidification are yet to be investigated. To address this knowledge gap, we conducted a laboratory culture experiment in which we tested the growth and physiological responses of Phyllospora comosa juveniles from the southern extent of its range (43–31°S) to marine heatwaves, ocean warming and acidification. We used a ‘collapsed factorial design’ in which marine heatwaves were superimposed on current (today's pH and temperature) and future (pH and temperature projected by 2100) ocean conditions. Responses were tested both during the heatwaves, and after a 7‐day recovery period. Heatwaves reduced net photosynthetic rates in both current and future conditions, while respiration rates were elevated under heatwaves in the current conditions only. Following the recovery period, there was little evidence of heatwaves having lasting negative effects on growth, photosynthesis or respiration. Exposure to heatwaves, future ocean conditions or both caused an increase in the degree of saturation of fatty acids. This adjustment may have counteracted negative effects of elevated temperatures by decreasing membrane fluidity, which increases at higher temperatures. Furthermore, P. comosa appeared to down‐regulate the energetically expensive carbon dioxide concentrating mechanism in the future conditions with a reduction in δ13C values detected in these treatments. Any saved energy arising from this down‐regulation was not invested in growth and was likely invested in the adjustment of fatty acid composition. This adjustment is a mechanism by which P. comosa and other seaweeds may tolerate the negative effects of ocean warming and marine heatwaves through benefits arising from ocean acidification.  相似文献   
223.
Over the past decade chemical processing and engineering of musculoskeletal tissue (tendon and bone) has improved dramatically. The use of bone allograft and xenograft in reconstructive orthopedic and maxillofacial surgeries is increasing, yet severe complications can occur if the material is contaminated in any way. A novel tissue sterilization process, BioCleanse®, has been developed to clean and sterilize musculoskeletal tissue for implantation. The present study was designed to determine the effect of this novel cleaning process on the biomechanical properties of bovine cortical bone prior to implantation. The mechanical properties of treated bovine bone material were compared to human samples with respect to failure under compression, shear and three-point bending. The data demonstrate that bovine bone treated with the novel sterilization procedure has favorable biomechanical properties compared to that of human bone treated in a similar fashion.  相似文献   
224.
P. J. Mundy  A. W. Cook 《Ostrich》2013,84(3-4):72-84
Mundy. P. J. & Cook, A. W. 1977. Observations on the breeding of the Pied Crow and Great Spotted Cuckoo in northern Nigeria. Ostrich 48:72-84.

The breeding cycle of the Pied Crow Corvus albus was studied in 1971. The birds bred in the wet season and all of 23 pairs were single-brooded. They appeared to nest territorially, and mostly close to human habitations. Average clutch size was 4.8 eggs and the greenish eggs were either pale and lightly marked, or darker and heavily marked. The average incubation and fledging periods were 181/2 and 38 days respectively. Chicks hatched asynchronously. Five crow nests were found parasitised by the Great Spotted Cuckoo Clamator glandarius and it appeared that only one hen cuckoo was responsible. The cuckoo apparently did not remove, or even crack, host eggs. One instance of an adult cuckoo feeding a juvenile was seen. In terms of growth increments a cuckoo chick substituted for one-half a crow chick but developed faster and fledged in nearly one-half the time. The cuckoo reduced host breeding success practically to zero apparently by indirect means, which contrasts with its situation in Europe.  相似文献   
225.
226.
The interaction of the human immunodeficiency virus type 1 (HIV-1) nucleoprotein complex with the cell nuclear import machinery is necessary for viral replication in macrophages and for the establishment of infection in quiescent T lymphocytes. The karyophilic properties of two viral proteins, matrix (MA) and Vpr, are keys to this process. Here, we show that an early step of HIV-1 nuclear import is the recognition of the MA nuclear localization signal (NLS) by Rch1, a member of the karyopherin-alpha family. Furthermore, we demonstrate that an N-terminally truncated form of Rch1 which binds MA but fails to localize to the nucleus efficiently blocks MA- but not Vpr-mediated HIV-1 nuclear import. Correspondingly, NLS peptide inhibits the nuclear migration of MA but not that of Vpr and prevents the infection of terminally differentiated macrophages by vpr-defective virus but not wild-type virus. These results are consistent with a model in which Rch1 or another member of the karyopherin-alpha family, through the recognition of the MA NLS, participates in docking the HIV-1 nucleoprotein complex at the nuclear pore. In addition, our data suggest that Vpr governs HIV-1 nuclear import through a distinct pathway.  相似文献   
227.
Plant Protein Phosphorylation, 12-15 September 2001, Vienna, Austria.  相似文献   
228.
Recent work on the fragile fiber mutants of Arabidopsis has identified microtubule-associated proteins that affect the orientation of cellulose microfibrils in cell walls, a major determinant of plant elongation growth. These same proteins are implicated in responses to gibberellin, provoking fresh speculation about how this hormone affects cell elongation and growth.  相似文献   
229.
Recent outbreaks of highly pathogenic avian influenza virus (AIV) in birds, humans and other mammalian species calls for a better understanding of virus dynamics in wild bird species and populations that act as maintenance hosts. Host ecology influences the transmission of pathogens and can be used to explore and infer pathogen dynamics. Most of the ecological processes proposed to explain AIV transmission in wild birds have been derived from studies conducted in the temperate and boreal regions of the northern hemisphere. We evaluate the role of two key drivers of AIV dynamics in a waterfowl community in Zimbabwe (southern Africa): (1) the recruitment of young birds and (2) the seasonal aggregation of birds. We analyse the seasonal variation of AIV prevalence in waterfowl and overlay these data with the phenology of reproduction and the seasonal variation in the local abundance of these species. We find that the breeding period of southern Afrotropical waterfowl species is more extended and somewhat less synchronized among species in the community than is the case in temperate and boreal waterfowl communities. Young birds are recorded at most times of the year, and these immunologically naïve individuals can therefore act as new hosts for AIV throughout the year within the wild bird population. Although host aggregation peaks in the cold‐dry to hot‐dry season, birds still aggregate throughout the year and this potentially spreads the opportunities for first infection of juveniles and other naïve birds temporally. We did not find a relationship between season, AIV prevalence in waterfowl, the influx of juveniles or the gradual aggregation of birds during the dry season. Therefore, the main drivers of AIV dynamics (juvenile influx and host abundance/aggregation), although present in Afrotropical regions, could not explain the AIV seasonal patterns in our study in contrast to results reported from temperate and boreal regions. These differences imply variation in the risk of AIV circulation in waterfowl and in the risk of spread to poultry, other animals or humans.  相似文献   
230.
Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号