全文获取类型
收费全文 | 248篇 |
免费 | 30篇 |
国内免费 | 1篇 |
专业分类
279篇 |
出版年
2022年 | 2篇 |
2021年 | 2篇 |
2019年 | 2篇 |
2018年 | 3篇 |
2016年 | 9篇 |
2015年 | 5篇 |
2014年 | 6篇 |
2013年 | 12篇 |
2012年 | 11篇 |
2011年 | 13篇 |
2010年 | 9篇 |
2009年 | 8篇 |
2008年 | 12篇 |
2007年 | 13篇 |
2006年 | 13篇 |
2005年 | 11篇 |
2004年 | 6篇 |
2003年 | 11篇 |
2002年 | 13篇 |
2001年 | 9篇 |
2000年 | 13篇 |
1999年 | 6篇 |
1998年 | 6篇 |
1997年 | 3篇 |
1996年 | 2篇 |
1995年 | 4篇 |
1994年 | 5篇 |
1993年 | 2篇 |
1992年 | 5篇 |
1991年 | 6篇 |
1990年 | 5篇 |
1989年 | 4篇 |
1987年 | 5篇 |
1986年 | 5篇 |
1985年 | 4篇 |
1984年 | 2篇 |
1983年 | 2篇 |
1981年 | 2篇 |
1980年 | 7篇 |
1974年 | 1篇 |
1973年 | 2篇 |
1972年 | 2篇 |
1970年 | 1篇 |
1969年 | 1篇 |
1967年 | 1篇 |
1966年 | 1篇 |
1961年 | 1篇 |
1960年 | 1篇 |
1957年 | 1篇 |
1948年 | 1篇 |
排序方式: 共有279条查询结果,搜索用时 15 毫秒
171.
Flip through The Pictorial Guide to the Living Primates1 and you will notice a striking yet generally underappreciated aspect of primate biology: primates are extremely colorful. Primate skin and pelage coloration were highlighted examples in Darwin's2 original discussions of sexual selection but, surprisingly, the topic has received little research attention since. Here we summarize the patterns of color variation observed across the primate order and examine the selective forces that might drive and maintain this aspect of primate phenotypic diversity. We discuss how primate color patterns might be adaptive for physiological function, crypsis, and communication. We also briefly summarize what is known about the genetic basis of primate pigmentation and argue that understanding the proximate mechanisms of primate coloration will be essential, not only for understanding the evolutionary forces shaping phenotypic variation, but also for clarifying primate taxonomies and conservation priorities. 相似文献
172.
M. Bliffeld J. Mundy I. Potrykus J. Fütterer 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1999,98(6-7):1079-1086
Fungal wheat (Triticum aestivum) diseases greatly affect crop productivity and require the economically and ecologically undesirable application of fungicides
in wheat agriculture. We have generated transgenic wheat plants constitutively expressing an antifungal barley-seed class
II chitinase. The transgene was stably expressed and the chitinase properly localized in the apoplast of the transgenic lines.
The engineered wheat plants showed increased resistance to infection with the powdery mildew-causing fungus Erysiphe graminis.
Received: 20 October 1998 / Accepted: 26 October 1998 相似文献
173.
Mitosis and inhibition of intracellular transport stimulate palmitoylation of a 62-kD protein 下载免费PDF全文
Recent studies suggest that a cycle of acylation/deacylation is involved in the vesicular transport of proteins between intracellular compartments at both the budding and the fusion stage (Glick, B. S., and J. E. Rothman. 1987. Nature (Lond.). 326:309-312). Since a number of cellular processes requiring vesicular transport are inhibited during mitosis, we examined the fatty acylation of proteins in interphase and mitotic cells. We have identified a major palmitoylated protein with an apparent molecular weight of 62,000 (p62), whose level of acylation increases 5-10-fold during mitosis. Acylation was reversible and p62 was no longer palmitoylated in cells that have exited mitosis and entered G1. p62 is tightly bound to the cytoplasmic side of membranes, since it was sensitive to digestion with proteases in the absence of detergent and was not removed by treatment with 1 M KCl. p62 is removed from membranes by nonionic detergents or concentrations of urea greater than 4 M. The localization of p62 by subcellular fractionation is consistent with it being in the cis-Golgi or the cis-Golgi network. A palmitoylated protein of the same molecular weight was also observed in interphase cells treated with inhibitors of intracellular transport, such as brefeldin A, monensin, carbonylcyanide m-chlorophenylhydrazone, or aluminum fluoride. The protein palmitoylated in the presence of brefeldin A was shown to be the same as that palmitoylated during mitosis using partial proteolysis. Digestion with two enzymes, alkaline protease and endoprotease lys-C, generated the same 3H-palmitate-labeled peptide fragments from p62 from mitotic or brefeldin A-treated cells. We suggest that the acylation and deacylation of p62 may be important in vesicular transport and that this process may be regulated during mitosis. 相似文献
174.
175.
176.
Adaptive evolution of four microcephaly genes and the evolution of brain size in anthropoid primates
Montgomery SH Capellini I Venditti C Barton RA Mundy NI 《Molecular biology and evolution》2011,28(1):625-638
The anatomical basis and adaptive function of the expansion in primate brain size have long been studied; however, we are only beginning to understand the genetic basis of these evolutionary changes. Genes linked to human primary microcephaly have received much attention as they have accelerated evolutionary rates along lineages leading to humans. However, these studies focus narrowly on apes, and the link between microcephaly gene evolution and brain evolution is disputed. We analyzed the molecular evolution of four genes associated with microcephaly (ASPM, CDK5RAP2, CENPJ, MCPH1) across 21 species representing all major clades of anthropoid primates. Contrary to prevailing assumptions, positive selection was not limited to or intensified along the lineage leading to humans. In fact we show that all four loci were subject to positive selection across the anthropoid primate phylogeny. We developed clearly defined hypotheses to explicitly test if selection on these loci was associated with the evolution of brain size. We found positive relationships between both CDK5RAP2 and ASPM and neonatal brain mass and somewhat weaker relationships between these genes and adult brain size. In contrast, there is no evidence linking CENPJ and MCPH1 to brain size evolution. The stronger association of ASPM and CDK5RAP2 evolution with neonatal brain size than with adult brain size is consistent with these loci having a direct effect on prenatal neuronal proliferation. These results suggest that primate brain size may have at least a partially conserved genetic basis. Our results contradict a previous study that linked adaptive evolution of ASPM to changes in relative cortex size; however, our analysis indicates that this conclusion is not robust. Our finding that the coding regions of two widely expressed loci has experienced pervasive positive selection in relation to a complex, quantitative developmental phenotype provides a notable counterexample to the commonly asserted hypothesis that cis-regulatory regions play a dominant role in phenotypic evolution. 相似文献
177.
178.
179.
180.
Walsh N Dale J McGraw KJ Pointer MA Mundy NI 《Proceedings. Biological sciences / The Royal Society》2012,279(1726):58-66
Carotenoid-based coloration has attracted much attention in evolutionary biology owing to its role in honest, condition-dependent signalling. Knowledge of the genetic pathways that regulate carotenoid coloration is crucial for an understanding of any trade-offs involved. We identified genes with potential roles in carotenoid coloration in vertebrates via (i) carotenoid uptake (SR-BI, CD36), (ii) binding and deposition (StAR1, MLN64, StAR4, StAR5, APOD, PLIN, GSTA2), and (iii) breakdown (BCO2, BCMO1). We examined the expression of these candidate loci in carotenoid-coloured tissues and several control tissues of the red-billed quelea (Quelea quelea), a species that exhibits a male breeding plumage colour polymorphism and sexually dimorphic variation in bill colour. All of the candidate genes except StAR1 were expressed in both the plumage and bill of queleas, indicating a potential role in carotenoid coloration in the quelea. However, no differences in the relative expression of any of the genes were found among the quelea carotenoid phenotypes, suggesting that other genes control the polymorphic and sexually dimorphic variation in carotenoid coloration observed in this species. Our identification of a number of potential carotenoid genes in different functional categories provides a critical starting point for future work on carotenoid colour regulation in vertebrate taxa. 相似文献