首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   9篇
  2021年   1篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   6篇
  2012年   5篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2006年   1篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1990年   7篇
  1989年   4篇
  1988年   2篇
  1987年   6篇
  1986年   2篇
  1985年   4篇
  1984年   8篇
  1983年   2篇
  1981年   1篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1976年   2篇
  1975年   3篇
  1974年   4篇
  1973年   2篇
  1972年   3篇
  1971年   1篇
  1970年   2篇
  1969年   2篇
  1968年   4篇
  1966年   2篇
排序方式: 共有130条查询结果,搜索用时 15 毫秒
41.
Using a variety of physico-chemical techniques we have recently characterized three distinct forms of glucocorticoid-receptor complexes present in the cytosol from rat thymus cells incubated with glucocorticoid; the relative proportions of these complexes are dependent on the conditions to which the cells or cytosols are exposed. Two of these complexes correspond to the well established nonactivated and activated receptor forms, while the third has properties consistent with mero-receptor. Based on their differential affinities for DNA- and DEAE-cellulose we have developed a rapid mini-column chromatographic procedure for separating these three forms and have used it to examine the stability of complexes in cytosol preparations. We have found that activated glucocorticoid-receptor complexes from rat thymus cells are relatively unstable under cell-free conditions in that they undergo time-dependent losses in DNA binding and are converted to mero-receptor. In contrast, cytosolic glucocorticoid-receptor complexes prepared from WEHI-7 mouse thymoma cells are remarkably stable under similar conditions. Mixing experiments with equal portions of rat thymus and WEHI-7 cytosol revealed that the difference between the two tissues cannot be accounted for merely by differences in amounts of proteolytic enzymes, since addition of rat thymus cytosol to WEHI-7 cytosol containing activated glucocorticoid-receptor complexes does not result in their conversion to mero-receptor. However, the WEHI-7 cytosol affords considerable protection to activated glucocorticoid-receptor complexes in thymus cytosol. The stabilizing factor from WEHI-7 cytosol is heat stable (survives 100 degrees C for 30 min), insensitive to pH over a wide range (4.0-10.0), and appears to be macromolecular. It does not inhibit activation, and thus appears distinct from the previously described endogenous glucocorticoid receptor stabilizing factor responsible for stabilization of thymocyte receptor binding capacity (Leach et al., J. Biol. Chem. 257: 381-388, 1982). We propose that the factor is an endogenous inhibitor of the protease(s) responsible for mero-receptor formation.  相似文献   
42.

Background  

Based on sequence similarity, the superfamily of G protein-coupled receptors (GPRs) can be subdivided into several subfamilies, the members of which often share similar ligands. The sequence data provided by the human genome project allows us to identify new GPRs by in silico homology screening, and to predict their ligands.  相似文献   
43.
Messenger RNA (mRNA) transport to neuronal dendrites is crucial for synaptic plasticity, but little is known of assembly or translational regulation of dendritic messenger ribonucleoproteins (mRNPs). Here we characterize a novel mRNP complex that is found in neuronal dendrites throughout the central nervous system and in some axonal processes of the spinal cord. The complex is characterized by the LSm1 protein, which so far has been implicated in mRNA degradation in nonneuronal cells. In brain, it associates with intact mRNAs. Interestingly, the LSm1-mRNPs contain the cap-binding protein CBP80 that associates with (pre)mRNAs in the nucleus, suggesting that the dendritic LSm1 complex has been assembled in the nucleus. In support of this notion, neuronal LSm1 is partially nuclear and inhibition of mRNA synthesis increases its nuclear localization. Importantly, CBP80 is also present in the dendrites and both LSm1 and CBP80 shift significantly into the spines upon stimulation of glutamergic receptors, suggesting that these mRNPs are translationally activated and contribute to the regulated local protein synthesis.  相似文献   
44.
Saccharomyces cerevisiae Pex3p has been shown to act at the ER during de novo peroxisome formation. However, its steady state is at the peroxisomal membrane, where its role is debated. Here we show that Pex3p has a dual function: one in peroxisome formation and one in peroxisome segregation. We show that the peroxisome retention factor Inp1p interacts physically with Pex3p in vitro and in vivo, and split-GFP analysis shows that the site of interaction is the peroxisomal membrane. Furthermore, we have generated PEX3 alleles that support peroxisome formation but fail to support recruitment of Inp1p to peroxisomes, and as a consequence are affected in peroxisome segregation. We conclude that Pex3p functions as an anchor for Inp1p at the peroxisomal membrane, and that this function is independent of its role at the ER in peroxisome biogenesis.  相似文献   
45.
The dependence of hormone binding to glucocorticoid receptors (GRs) on cellular ATP levels led us to propose that GRs normally traverse an ATP-dependent cycle, possibly involving receptor phosphorylation, and that without ATP they accumulate in a form that cannot bind hormone. We identified such a form, the null receptor, in ATP-depleted cells. GRs are basally phosphorylated, and become hyperphosphorylated after treatment with hormone (but not RU486). In mouse receptors we have identified 7 phosphorylated sites, all in the N-terminal domain. Most are on serines and lie within a transactivation region. The time-course of hormone-induced hyperphosphorylation indicates that the primary substrates for hyperphosphorylation are the activated receptors; unliganded and hormone-liganded nonactivated receptors become hyperphosphorylated more slowly. After dissociation of hormone, most receptors appear to be recycled and reutilized in hyperphosphorylated form. From these and related observations, we have concluded that the postulated ATP-dependent cycle can be accounted for by hormone-induced or spontaneous dissociation of receptor-Hsp90 complexes, followed by reassociation of unliganded receptors with Hsp90 via an ATP-dependent reaction like that demonstrated in cell-free systems. Other steroid hormone receptors might traverse a similar cycle. Four of the 7 phosphorylated sites in the N-terminal domain are in consensus sequences for p34cdc2 kinases important in cell cycle regulation. This observation, along with the known cell cycle-dependence of sensitivity to glucocorticoids and other evidence, point to a role for receptor phosphorylation in controlling responses to glucocorticoids through the cell cycle.  相似文献   
46.
47.
Natural products represent a significant reservoir of unexplored chemical diversity for early-stage drug discovery. The identification of lead compounds of natural origin would benefit from therapeutically relevant bioassays capable of facilitating the isolation of bioactive molecules from multi-constituent extracts. Towards this end, we developed an in vivo bioassay-guided isolation approach for natural product discovery that combines bioactivity screening in zebrafish embryos with rapid fractionation by analytical thin-layer chromatography (TLC) and initial structural elucidation by high-resolution electrospray mass spectrometry (HRESIMS). Bioactivity screening of East African medicinal plant extracts using fli-1:EGFP transgenic zebrafish embryos identified Oxygonum sinuatum and Plectranthus barbatus as inhibiting vascular development. Zebrafish bioassay-guided fractionation identified the active components of these plants as emodin, an inhibitor of the protein kinase CK2, and coleon A lactone, a rare abietane diterpenoid with no previously described bioactivity. Both emodin and coleon A lactone inhibited mammalian endothelial cell proliferation, migration, and tube formation in vitro, as well as angiogenesis in the chick chorioallantoic membrane (CAM) assay. These results suggest that the combination of zebrafish bioassays with analytical chromatography methods is an effective strategy for the rapid identification of bioactive natural products.  相似文献   
48.
Third harmonic generation (THG) microscopy shows great potential for instant pathology of brain tissue during surgery. However, the rich morphologies contained and the noise associated makes image restoration, necessary for quantification of the THG images, challenging. Anisotropic diffusion filtering (ADF) has been recently applied to restore THG images of normal brain, but ADF is hard‐to‐code, time‐consuming and only reconstructs salient edges. This work overcomes these drawbacks by expressing ADF as a tensor regularized total variation model, which uses the Huber penalty and the L1 norm for tensor regularization and fidelity measurement, respectively. The diffusion tensor is constructed from the structure tensor of ADF yet the tensor decomposition is performed only in the non‐flat areas. The resulting model is solved by an efficient and easy‐to‐code primal‐dual algorithm. Tests on THG brain tumor images show that the proposed model has comparable denoising performance as ADF while it much better restores weak edges and it is up to 60% more time efficient.   相似文献   
49.
The primary lung bud originates from the foregut and develops into the bronchial tree by repetitive branching and outgrowing of the airway. The Sry related HMG box protein Sox2 is expressed in a cyclic manner during initiation and branching morphogenesis of the lung. It is highly expressed in non-branching regions and absent from branching regions, suggesting that downregulation of Sox2 is mandatory for airway epithelium to respond to branch inducing signals. Therefore, we developed transgenic mice that express a doxycycline inducible Sox2 in the airway epithelium. Continuous expression of Sox2 hampers the branching process resulting in a severe reduction of the number of airways. In addition, the bronchioli transiently go over into enlarged, alveolar-like airspaces, a pathology described as bronchiolization of alveoli. Furthermore, a substantial increase was observed of cGRP positive neuroendocrine cells and ΔNp63 isoform expressing (pre-) basal cells, which are both committed precursor-like cells. Thus, Sox2 prevents airways from branching and prematurely drives cells into committed progenitors, apparently rendering these committed progenitors unresponsive to branch inducing signals. However, Sox2 overexpression does not lead to a complete abrogation of the epithelial differentiation program.  相似文献   
50.
Genetic alterations causing constitutive tyrosine kinase activation are observed in a broad spectrum of cancers. Thus far, these mutant kinases have been localized to the plasma membrane or cytoplasm, where they engage proliferation and survival pathways. We report that the NUP214-ABL1 fusion is unique among these because of its requisite localization to the nuclear pore complex for its transforming potential. We show that NUP214-ABL1 displays attenuated transforming capacity as compared to BCR-ABL1 and that NUP214-ABL1 preferentially transforms T cells, which is in agreement with its unique occurrence in T cell acute lymphoblastic leukemia. Furthermore, NUP214-ABL1 differs from BCR-ABL1 in subcellular localization, initiation of kinase activity, and signaling and lacks phosphorylation on its activation loop. In addition to delineating an unusual mechanism for kinase activation, this study provides new insights into the spectrum of chromosomal translocations involving nucleoporins by indicating that the nuclear pore context itself may play a central role in transformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号