首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5812篇
  免费   419篇
  国内免费   3篇
  2024年   7篇
  2023年   29篇
  2022年   76篇
  2021年   109篇
  2020年   85篇
  2019年   115篇
  2018年   172篇
  2017年   123篇
  2016年   206篇
  2015年   297篇
  2014年   373篇
  2013年   428篇
  2012年   519篇
  2011年   494篇
  2010年   308篇
  2009年   281篇
  2008年   356篇
  2007年   362篇
  2006年   294篇
  2005年   267篇
  2004年   300篇
  2003年   227篇
  2002年   190篇
  2001年   105篇
  2000年   110篇
  1999年   76篇
  1998年   30篇
  1997年   30篇
  1996年   21篇
  1995年   20篇
  1994年   15篇
  1993年   15篇
  1992年   21篇
  1991年   26篇
  1990年   20篇
  1989年   13篇
  1988年   17篇
  1987年   8篇
  1986年   6篇
  1985年   9篇
  1984年   10篇
  1982年   5篇
  1980年   5篇
  1979年   4篇
  1978年   4篇
  1976年   6篇
  1975年   4篇
  1973年   5篇
  1971年   7篇
  1967年   4篇
排序方式: 共有6234条查询结果,搜索用时 31 毫秒
51.
Artemisinin and its derivatives, which have been known as antimalarial drugs, have also demonstrated their cytotoxicity against tumor cells. It has been proposed that antitumor activity depends on the lipophilicity of functional group on artemisinin derivatives. Solution structures of two artemisinin derivatives as antitumor drug candidates, deoxoartemisinin and carboxypropyldeoxoartemisinin, were determined by NMR spectroscopy to elucidate structure-activity relationship. According to biological assay, antitumor efficiencies are not dependent upon lipophilicity. Instead, these compounds demonstrated their distinctive structural features of boat/chair conformation and capability to interact with receptors, as they have different efficiencies on antitumor activity. Especially, carboxypropyl moiety or carbonyl moiety in artemisinin derivatives influences the conformation and stability of ring structure. Although the detailed mechanism of antitumor activity by artemisinin derivatives has not been addressed, we suggest that antitumor activity is not determined only with lipophilicity and that artemisinin derivatives have specific target proteins in each type of cancer.  相似文献   
52.
Hypoxia-inducible factors 1α and 2α (HIF-1α and HIF-2α) determine cancer cell fate under hypoxia. Despite the similarities of their structures, HIF-1α and HIF-2α have distinct roles in cancer growth under hypoxia, that is, HIF-1α induces growth arrest whereas HIF-2α promotes cell growth. Recently, sirtuin 1 (Sirt1) was reported to fine-tune cellular responses to hypoxia by deacetylating HIF-1α and HIF-2α. Yet, the roles of Sirt1 in HIF-1α and HIF-2α functions have been controversial. We here investigated the precise roles of Sirt1 in HIF-1α and HIF-2α regulations. Immunological analyses revealed that HIF-1α K674 and HIF-2α K741 are acetylated by PCAF and CBP, respectively, but are deacetylated commonly by Sirt1. In the Gal4 reporter systems, Sirt1 was found to repress HIF-1α activity constantly in ten cancer cell-lines but to regulate HIF-2α activity cell type-dependently. Moreover, Sirt1 determined cell growth under hypoxia depending on HIF-1α and HIF-2α. Under hypoxia, Sirt1 promoted cell proliferation of HepG2, in which Sirt1 differentially regulates HIF-1α and HIF-2α. In contrast, such an effect of Sirt1 was not shown in HCT116, in which Sirt1 inactivates both HIF-1α and HIF-2α because conflicting actions of HIF-1α and HIF-2α on cell growth may be offset. Our results provide a better understanding of the roles of Sirt1 in HIF-mediated hypoxic responses and also a basic concept for developing anticancer strategy targeting Sirt1.  相似文献   
53.
Antioxidant enzymes, such as superoxide dismutase (SOD) and catalase (CAT), have been considered to have a beneficial effect against various diseases that are mediated by the reactive oxygen species (ROS). Although a variety of modified recombinant antioxidant enzymes have been generated to protect against oxidative stresses, the lack of their transduction ability into cells resulted in a limited ability to detoxify intracellular ROS. To render the SOD enzyme capable of detoxifying intracellular ROS when added extracellularly, cell-permeable recombinant SOD proteins were generated. A human Cu,Zn-superoxide dismutase (Cu,Zn-SOD) gene was fused with a gene fragment that encodes the 9 amino acids Tat protein transduction domain (RKKRRQRRR) of HIV-1 and lysine rich peptide (KKKKKKKKK) in a bacterial expression vector in order to produce a genetic in-frame Tat-SOD and 9Lys-SOD fusion protein, respectively. The expressed and purified Tat-SOD and 9Lys-SOD fusion proteins can transduce into human fibroblast cells, and they were enzymatically active and stable for 24 h. The cell viability of the fibroblast cells that were treated with paraquat, an intracellular superoxide anion generator, was increased by the transduced Tat-SOD or 9Lys-SOD. The transduction efficacy of 9Lys-SOD was more efficient than that of Tat-SOD. We evaluated the ability of the SOD fusion pmteins to transduce into animal skin. This analysis showed that Tat-SOD and 9Lys-SOD fusion proteins efficiently penetrated into the epidermis as well as the dermis of the subcutaneous layer, when sprayed on mice skin (judged by the immunohistochemistry and specific enzyme activities). The enzymatic activity of the transduced 9Lys-SOD was higher than that of Tat-SOD, indicating that the penetration of 9Lys-SOD was more efficient when put into the skin. These results suggest Tat-SOD and 9Lys-SOD fusion proteins can be used as anti-aging cosmetics, or in protein therapy, for various disorders that are related to this antioxidant enzyme and ROS.  相似文献   
54.
TAT-mediated delivery of human glutamate dehydrogenase into PC12 cells   总被引:10,自引:0,他引:10  
Human glutamate dehydrogenase (GDH) gene was fused with a gene fragment encoding the nine amino acid (RKKRRQRRR) protein transduction domain of human immunodeficiency virus TAT protein in bacterial expression vector to produce genetic in-frame TAT-GDH fusion protein. The TAT-GDH protein can enter PC12 cells efficiently when added exogenously in culture media as determined by Western blot analysis and enzyme activities. Once inside the cells, the transduced denatured TAT-GDH protein showed a full activity of GDH indicating that the TAT-GDH fusion protein was correctly refolded after delivery into cells and the activities of GDH in the TAT-GDH fusion protein was not affected by the addition of the TAT sequence. TAT-GDH fusion protein and TAT itself showed no cytotoxicity in PC12 cells. Although the exact mechanism of transduction across a membrane remains unclear, the transduction activity of TAT-GDH into PC12 cells may suggest new possibilities for direct delivery of GDH into the patients with the GDH-deficient disorders.  相似文献   
55.
56.
We have developed an affinity biosensor system based on avidin-biotin interaction on a gold electrode. As the building block of an affinity-sensing monolayer, a fourth-generation (G4) poly(amidoamine) dendrimer having partial ferrocenyl-tethered surface groups was prepared and used. The unmodified surface amine groups from dendrimers were functionalized with biotinamidocaproate, and the biotinylated and electroactive dendritic monolayer was constructed on a gold electrode for the affinity-sensing surface interacting with avidin. An electrochemical signal from the affinity biosensor was generated by free glucose oxidase in electrolyte, depending on the degree of coverage of the sensing surface with avidin. The sensor signal decreased correlatively with increasing avidin concentration and approached a minimum level when the sensing surface was fully covered with avidin. The detection limit of avidin was about 4.5 pM, and the sensor signal was linear ranging from 1.5 pM to 10 nM under optimized conditions. From the kinetic analysis using the biotinylated glucose oxidase, an active enzyme coverage of 2.5 x 10(-12) mol/cm(2) on the avidin-pretreated surface was registered, which demonstrates the formation of a spatially ordered and compact protein layer on the derivatized electrode surface.  相似文献   
57.
In order to develop a serum-free (SF) medium for the production of erythropoietin (EPO) by suspension culture of recombinant Chinese hamster ovary (rCHO) cells, a statistical optimization approach based on a Plackett-Burman design was adopted. A basal medium was prepared by supplementing Iscove's modified Dulbecco's medium (IMDM) with Fe(NO3)3.9H2O, CuCl2 and ZnSO4.7H2O which are generally contained in SF medium formulations. Insulin, transferrin and ethanolamine were also supplemented to the basal medium to determine their optimal concentrations. From this statistical analysis, glutamate, serine, methionine, phosphatidylcholine, hydrocortisone and pluronic F68 were identified as positive determinants for cell growth. The SF medium was formulated by supplementing the basal medium with components showing positive effects on cell growth in suspension culture. An EPO titer in this optimized SF medium was 79% of that in IMDM supplemented with 5% dialyzed fetal bovine serum (dFBS). Furthermore, the in vitro and in vivo biological activities of EPO produced in the SF medium were comparable to those produced in the serum-supplemented medium. Taken together, the results obtained here show that a Plackett-Burman design facilitates the development of SF media for the production of EPO by suspension culture of rCHO cells.  相似文献   
58.
L-arabinose isomerase (EC 5.3.1.4) mediates the isomerization of D-galactose into D-tagatose as well as the conversion of L-arabinose into L-ribulose. To investigate the properties of L-arabinose isomerase as a biocatalyst for the conversion of galactose to tagatose, the L-arabinose isomerase of Escherichia coli was characterized. The substrate specificity for L-arabinose was 166-fold higher than that for D-galactose. The optimal pH and temperature for the galactose isomerization reaction were 8.0 and 30 °C, respectively. The enzyme activity was stable for 1 h at temperatures below 35 °C and within a pH range of 8–10. The Michaelis constant, K m, for galactose was 1480 mM, which is 25-fold higher than that for arabinose. The addition of Fe2+ and Mn2+ ions enhanced the conversion of galactose to tagatose, whereas the addition of Cu2+, Zn2+, Hg2+, and Fe3+ ions inhibited the reaction completely. In the presence of 1 mM Fe2+ ions, the K m for galactose was found to be 300 mM.  相似文献   
59.
Barrier epithelia, especially airway epithelial cells, are persistently exposed to micro-organisms and environmental factors. To protect the host from these microbial challenges, many immune strategies have evolved. The airway epithelium participates in the critical innate immune response through the secretion of immune effectors such as mucin, antimicrobial peptides (AMP), and reactive oxygen species (ROS) to entrap or kill invading microbes. In addition, airway epithelial cells can act as mediators connecting innate and adaptive immunity by producing various cytokines and chemokines. Here, we present an overview of the role of mucosal immunity in airway epithelium, emphasizing the framework of bacterial and viral infections along with regulatory mechanisms of immune effectors in human cells and selected animal models. We also describe pathophysiological roles for immune effectors in human airway disease.  相似文献   
60.
Jang do S  Lee HJ  Lee B  Hong BH  Cha HJ  Yoon J  Lim K  Yoon YJ  Kim J  Ree M  Lee HC  Choi KY 《FEBS letters》2006,580(17):4166-4171
Failure to detect the intermediate in spite of its existence often leads to the conclusion that two-state transition in the unfolding process of the protein can be justified. In contrast to the previous equilibrium unfolding experiment fitted to a two-state model by circular dichroism and fluorescence spectroscopies, an equilibrium unfolding intermediate of a dimeric ketosteroid isomerase (KSI) could be detected by small angle X-ray scattering (SAXS) and analytical ultracentrifugation. The sizes of KSI were determined to be 18.7A in 0M urea, 17.3A in 5.2M urea, and 25.1A in 7M urea by SAXS. The size of KSI in 5.2M urea was significantly decreased compared with those in 0M and 7M urea, suggesting the existence of a compact intermediate. Sedimentation velocity as obtained by ultracentrifugation confirmed that KSI in 5.2M urea is distinctly different from native and fully-unfolded forms. The sizes measured by pulse field gradient nuclear magnetic resonance (NMR) spectroscopy were consistent with those obtained by SAXS. Discrepancy of equilibrium unfolding studies between size measurement methods and optical spectroscopies might be due to the failure in detecting the intermediate by optical spectroscopic methods. Further characterization of the intermediate using (1)H NMR spectroscopy and Kratky plot supported the existence of a partially-folded form of KSI which is distinct from those of native and fully-unfolded KSIs. Taken together, our results suggest that the formation of a compact intermediate should precede the association of monomers prior to the dimerization process during the folding of KSI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号