首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92969篇
  免费   260篇
  国内免费   880篇
  94109篇
  2022年   4篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   11837篇
  2017年   10670篇
  2016年   7445篇
  2015年   580篇
  2014年   271篇
  2013年   282篇
  2012年   4190篇
  2011年   12793篇
  2010年   11989篇
  2009年   8217篇
  2008年   9769篇
  2007年   11347篇
  2006年   247篇
  2005年   496篇
  2004年   954篇
  2003年   1011篇
  2002年   771篇
  2001年   253篇
  2000年   158篇
  1999年   23篇
  1998年   7篇
  1997年   21篇
  1996年   9篇
  1994年   6篇
  1993年   29篇
  1992年   20篇
  1991年   37篇
  1990年   7篇
  1989年   7篇
  1988年   17篇
  1987年   13篇
  1984年   7篇
  1983年   17篇
  1982年   2篇
  1980年   1篇
  1975年   5篇
  1972年   246篇
  1971年   274篇
  1970年   5篇
  1965年   13篇
  1962年   24篇
  1956年   5篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
A new cell line of human ovarian clear cell carcinoma (CCC), TU-OC-2, was established and characterized. The cells were polygonal in shape, grew in monolayers without contact inhibition and were arranged in islands like pieces of a jigsaw puzzle. The chromosome numbers ranged from 41 to 96. A low rate of proliferation was observed and the doubling time was 37.5 h. The IC50 values of cisplatin, 7-ethyl-10-hydroxycamptothecin (SN38), which is an active metabolite of camptothecin, and paclitaxel were 7.7 μM, 17.7 nM and 301 nM, respectively. The drug sensitivity assay indicated that TU-OC-2 was sensitive to SN38, but resistant to cisplatin and paclitaxel. Mutational analysis revealed that TU-OC-2 cells have no mutations of PIK3CA in exons 9 and 20 and of TP53 in exons 4–9. We observed the loss of ARID1A protein expression in TU-OC-2 cells by western blot analysis and in the original tumor tissue by immunohistochemistry. This cell line may be useful for studying the chemoresistant mechanisms of CCC and exploring novel therapeutic targets such as the ARID1A-related signaling pathway.  相似文献   
962.
A cell line, designated NOCC, was established from the ascites of a patient with clear cell adenocarcinoma of the ovary. The cell line has been grown without interruption and continuously propagated by serial passaging (more than 76 times) over 7 years. The cells are spherical to polygonal-shaped, display neoplastic, and pleomorphic features, and grow in a jigsaw puzzle-like pattern while forming monolayers without contact inhibition. The cells proliferate rapidly, but are easily floated as a cell sheet. The population doubling time is about 29 h. The number of chromosomes ranges from 60 to 83. The modal number of chromosomes is 70–74 at the 30th passage. NOCC cells secreted 750.5 ng/ml of VEGF over 3 days of culture. Hypoxia inducible factor-1α (HIF-1α) is a primary regulator of VEGF under hypoxic conditions. NOCC cells were not sensitive to the anticancer drugs BEV, DOX, GEM, ETP, CDDP, or TXT. The graft of NOCC cells to a scid mouse displayed similar histological aspects to the original tumor. Both the NOCC cells and the graft of the NOCC cells gave a positive PAS reaction.  相似文献   
963.
Selective herbivory can influence both spatial and temporal vegetation heterogeneity. For example, many northern European populations of free-ranging ungulates have reached unprecedented levels, which can influence plant species turnover, long-term maintenance of biodiversity and the subsequent stability of boreal ecosystems. However, the mechanisms by which large herbivores affect spatial and temporal vegetation heterogeneity remain poorly understood. Here, we combined a 10-year exclusion experiment with a herbivore intensity gradient to investigate how red deer (Cervus elaphus) acts as a driver of temporal and spatial heterogeneity in the understory of a boreal forest. We measured the two dimensions of heterogeneity as temporal and spatial species turnover. We found that temporal heterogeneity was positively related to herbivory intensity, and we found a similar trend for spatial heterogeneity. Removing red deer (exclosure) from our study system caused a distinct shift in species composition, both spatially (slow response) and temporally (quick response). Vegetation from which red deer had been excluded for 10 years showed the highest spatial heterogeneity, suggesting that the most stable forest understory will occur where there are no large herbivores. However, excluding red deer resulted in lower species diversity and greater dominance by a low number of plant species. If both stable but species rich ecosystems are the management goal, these findings suggest that naturally fluctuating, but moderate red deer densities should be sustained.  相似文献   
964.
Salix psammophila and Caragana korshinskii are two common shrubs in the southern Mu Us Desert, China. Their hydraulic strategies for adapting to this harsh, dry desert environment are not yet clear. This study examined the hydraulic transport efficiency, vulnerability to cavitation, and daily embolism refilling in the leaves and stems of these two shrubs during the dry season. In order to gain insight into water use strategies of whole plants, other related traits were also considered, including daily changes in stomatal conductance, leaf mass per area, leaf pressure–volume parameters, wood density and the Huber value. The leaves and stems of S. psammophila had greater hydraulic efficiency, but were more vulnerable to drought-induced hydraulic dysfunction than C. korshinskii. The difference between leaf and stem water potential at 50 % loss of conductivity was 0.12 MPa for S. psammophila and 0.81 MPa for C. korshinskii. Midday stomatal conductance decreased by 74 % compared to that at 8:30 in S. psammophila, whereas no change occurred in C. korshinskii. Daily embolism and refilling occurred in the stems of S. psammophila and leaves of C. korshinskii. These results suggest that a stricter stomatal regulation, daily embolism repair in stems, and a higher stem water capacitance could be partially compensating for the greater susceptibility to xylem embolism in S. psammophila, whereas higher leaf elastic modulus, greater embolism resistance in stems, larger difference between leaf and stem hydraulic safety, and drought-induced leaf shedding in C. korshinskii were largely responsible for its more extensive distribution in arid and desert steppes.  相似文献   
965.
966.
Batch experiments were performed to evaluate biodegradation of raw and ozonated oil sands process-affected water (OSPW) under denitrifying anoxic and nitrifying aerobic conditions for 33 days. The results showed both the anoxic and aerobic conditions are effective in degrading OSPW classical and oxidized naphthenic acids (NAs) with the aerobic conditions demonstrating higher removal efficiency. The reactors under nitrifying aerobic condition reduced the total classical NAs of raw OSPW by 69.1 %, with better efficiency for species of higher hydrophobicity. Compared with conventional aerobic reactor, nitrifying aerobic condition substantially shortened the NA degradation half-life to 16 days. The mild-dose ozonation remarkably accelerated the subsequent aerobic biodegradation of classical NAs within the first 14 days, especially for those with long carbon chains. Moreover, the ozone pretreatment enhanced the biological removal of OSPW classical NAs by leaving a considerably lower final residual concentration of 10.4 mg/L under anoxic conditions, and 5.7 mg/L under aerobic conditions. The combination of ozonation and nitrifying aerobic biodegradation removed total classical NAs by 76.5 % and total oxy-NAs (O3–O6) by 23.6 %. 454 Pyrosequencing revealed that microbial species capable of degrading recalcitrant hydrocarbons were dominant in all reactors. The most abundant genus in the raw and ozonated anoxic reactors was Thauera (~56 % in the raw OSPW anoxic reactor, and ~65 % in the ozonated OSPW anoxic reactor); whereas Rhodanobacter (~40 %) and Pseudomonas (~40 %) dominated the raw and ozonated aerobic reactors, respectively. Therefore, the combination of mild-dose ozone pretreatment and subsequent biological process could be a competent choice for OSPW treatment.  相似文献   
967.
There are many types of neurons that intrinsically generate rhythmic bursting activity, even when isolated, and these neurons underlie several specific motor behaviors. Rhythmic neurons that drive the inspiratory phase of respiration are located in the medullary pre-Bötzinger Complex (pre-BötC). However, it is not known if their rhythmic bursting is the result of intrinsic mechanisms or synaptic interactions. In many cases, for bursting to occur, the excitability of these neurons needs to be elevated. This excitation is provided in vitro (e.g. in slices), by increasing extracellular potassium concentration (K out ) well beyond physiologic levels. Elevated K out shifts the reversal potentials for all potassium currents including the potassium component of leakage to higher values. However, how an increase in K out , and the resultant changes in potassium currents, induce bursting activity, have yet to be established. Moreover, it is not known if the endogenous bursting induced in vitro is representative of neural behavior in vivo. Our modeling study examines the interplay between K out , excitability, and selected currents, as they relate to endogenous rhythmic bursting. Starting with a Hodgkin-Huxley formalization of a pre-BötC neuron, a potassium ion component was incorporated into the leakage current, and model behaviors were investigated at varying concentrations of K out . Our simulations show that endogenous bursting activity, evoked in vitro by elevation of K out , is the result of a specific relationship between the leakage and voltage-dependent, delayed rectifier potassium currents, which may not be observed at physiological levels of extracellular potassium.  相似文献   
968.
We introduce a method for computing probabilities for spontaneous activity and propagation failure of the action potential in spatially extended, conductance-based neuronal models subject to noise, based on statistical properties of the membrane potential. We compare different estimators with respect to the quality of detection, computational costs and robustness and propose the integral of the membrane potential along the axon as an appropriate estimator to detect both spontaneous activity and propagation failure. Performing a model reduction we achieve a simplified analytical expression based on the linearization at the resting potential (resp. the traveling action potential). This allows to approximate the probabilities for spontaneous activity and propagation failure in terms of (classical) hitting probabilities of one-dimensional linear stochastic differential equations. The quality of the approximation with respect to the noise amplitude is discussed and illustrated with numerical results for the spatially extended Hodgkin-Huxley equations. Python simulation code is supplied on GitHub under the link https://github.com/deristnochda/Hodgkin-Huxley-SPDE.  相似文献   
969.
Gamma-band synchronization has been linked to attention and communication between brain regions, yet the underlying dynamical mechanisms are still unclear. How does the timing and amplitude of inputs to cells that generate an endogenously noisy gamma rhythm affect the network activity and rhythm? How does such ”communication through coherence” (CTC) survive in the face of rhythm and input variability? We present a stochastic modelling approach to this question that yields a very fast computation of the effectiveness of inputs to cells involved in gamma rhythms. Our work is partly motivated by recent optogenetic experiments (Cardin et al. Nature, 459(7247), 663–667 2009) that tested the gamma phase-dependence of network responses by first stabilizing the rhythm with periodic light pulses to the interneurons (I). Our computationally efficient model E-I network of stochastic two-state neurons exhibits finite-size fluctuations. Using the Hilbert transform and Kuramoto index, we study how the stochastic phase of its gamma rhythm is entrained by external pulses. We then compute how this rhythmic inhibition controls the effectiveness of external input onto pyramidal (E) cells, and how variability shapes the window of firing opportunity. For transferring the time variations of an external input to the E cells, we find a tradeoff between the phase selectivity and depth of rate modulation. We also show that the CTC is sensitive to the jitter in the arrival times of spikes to the E cells, and to the degree of I-cell entrainment. We further find that CTC can occur even if the underlying deterministic system does not oscillate; quasicycle-type rhythms induced by the finite-size noise retain the basic CTC properties. Finally a resonance analysis confirms the relative importance of the I cell pacing for rhythm generation. Analysis of whole network behaviour, including computations of synchrony, phase and shifts in excitatory-inhibitory balance, can be further sped up by orders of magnitude using two coupled stochastic differential equations, one for each population. Our work thus yields a fast tool to numerically and analytically investigate CTC in a noisy context. It shows that CTC can be quite vulnerable to rhythm and input variability, which both decrease phase preference.  相似文献   
970.
The vertical gradient of the leaf nitrogen content in a plant canopy is one of the determinants of vegetation productivity. The ecological significance of the nitrogen distribution in plant canopies has been discussed in relation to its optimality; nitrogen distribution in actual plant canopies is close to but always less steep than the optimal distribution that maximizes canopy photosynthesis. In this paper, I review the optimality of nitrogen distribution within canopies focusing on recent advancements. Although the optimal nitrogen distribution has been believed to be proportional to the light gradient in the canopy, this rule holds only when diffuse light is considered; the optimal distribution is steeper when the direct light is considered. A recent meta-analysis has shown that the nitrogen gradient is similar between herbaceous and tree canopies when it is expressed as the function of the light gradient. Various hypotheses have been proposed to explain why nitrogen distribution is suboptimal. However, hypotheses explain patterns observed in some specific stands but not in others; there seems to be no general hypothesis that can explain the nitrogen distributions under different conditions. Therefore, how the nitrogen distribution in canopies is determined remains open for future studies; its understanding should contribute to the correct prediction and improvement of plant productivity under changing environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号