首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1826篇
  免费   230篇
  2022年   9篇
  2021年   18篇
  2020年   20篇
  2019年   20篇
  2018年   23篇
  2017年   22篇
  2016年   32篇
  2015年   55篇
  2014年   76篇
  2013年   66篇
  2012年   96篇
  2011年   96篇
  2010年   66篇
  2009年   66篇
  2008年   85篇
  2007年   106篇
  2006年   91篇
  2005年   69篇
  2004年   71篇
  2003年   71篇
  2002年   69篇
  2001年   68篇
  2000年   59篇
  1999年   48篇
  1998年   31篇
  1997年   26篇
  1996年   25篇
  1995年   12篇
  1994年   12篇
  1993年   15篇
  1992年   29篇
  1991年   36篇
  1990年   32篇
  1989年   39篇
  1988年   32篇
  1987年   34篇
  1986年   21篇
  1985年   36篇
  1984年   26篇
  1983年   28篇
  1982年   15篇
  1981年   14篇
  1980年   16篇
  1979年   13篇
  1978年   15篇
  1977年   19篇
  1975年   19篇
  1974年   12篇
  1973年   8篇
  1972年   9篇
排序方式: 共有2056条查询结果,搜索用时 15 毫秒
181.
182.
The role of extracellular α-synuclein (α-syn) in the initiation and the spreading of neurodegeneration in Parkinson''s disease (PD) has been studied extensively over the past 10 years. However, the nature of the α-syn toxic species and the molecular mechanisms by which they may contribute to neuronal cell loss remain controversial. In this study, we show that fully characterized recombinant monomeric, fibrillar or stabilized forms of oligomeric α-syn do not trigger significant cell death when added individually to neuroblastoma cell lines. However, a mixture of preformed fibrils (PFFs) with monomeric α-syn becomes toxic under conditions that promote their growth and amyloid formation. In hippocampal primary neurons and ex vivo hippocampal slice cultures, α-syn PFFs are capable of inducing a moderate toxicity over time that is greatly exacerbated upon promoting fibril growth by addition of monomeric α-syn. The causal relationship between α-syn aggregation and cellular toxicity was further investigated by assessing the effect of inhibiting fibrillization on α-syn-induced cell death. Remarkably, our data show that blocking fibril growth by treatment with known pharmacological inhibitor of α-syn fibrillization (Tolcapone) or replacing monomeric α-syn by monomeric β-synuclein in α-syn mixture composition prevent α-syn-induced toxicity in both neuroblastoma cell lines and hippocampal primary neurons. We demonstrate that exogenously added α-syn fibrils bind to the plasma membrane and serve as nucleation sites for the formation of α-syn fibrils and promote the accumulation and internalization of these aggregates that in turn activate both the extrinsic and intrinsic apoptotic cell death pathways in our cellular models. Our results support the hypothesis that ongoing aggregation and fibrillization of extracellular α-syn play central roles in α-syn extracellular toxicity, and suggest that inhibiting fibril growth and seeding capacity constitute a viable strategy for protecting against α-syn-induced toxicity and slowing the progression of neurodegeneration in PD and other synucleinopathies.The discovery of α-synuclein (α-syn) as the main component of Lewy bodies (LBs) and the identification of gene duplication and missense mutations in the α-syn gene in some familial forms of Parkinson''s disease (PD) have reinforced the central role of α-syn in the etiology of both sporadic and familial cases of PD.1 Nevertheless, the relationship between α-syn aggregation and neurodegeneration in PD remains elusive.2A possible role for extracellular α-syn in the pathogenicity of PD emerged from the observation that newly grafted neurons in PD patients exhibit α-syn pathology similar to that of neighboring diseased cells.3, 4 Despite the consensus that α-syn is mainly an intracellular protein, α-syn has been detected in the cerebrospinal fluid under both pathological and healthy conditions.5 In addition, in vivo rodent models and cellular studies have shown that monomers6 and aggregated forms6, 7 of α-syn are secreted into the extracellular space via several mechanisms,7, 8 including the nonclassical endoplasmic reticulum/Golgi-independent exocytosis8 or the exosomal route,9, 10 and are then internalized by neighboring cells.7 This suggests that extracellular α-syn may play a critical role in the spreading of α-syn pathology throughout the brain and contributes to PD progression.Additional evidence for a causal role of extracellular α-syn in PD come from in vivo studies and cell culture models: (1) intracranial injections of pathological forms of α-syn, isolated from LBs or old mice, as well as recombinant α-syn fibrils, were shown to nucleate further α-syn aggregation, pathology spreading and trigger neurodegeneration in vivo in wild-type (WT) or transgenic mice11, 12, 13, 14 and rhesus monkeys;15 (2) recombinant extracellular α-syn aggregates are internalized in cultured cells and seed the aggregation of endogenous α-syn;12, 16, 17, 18 and (3) extracellular α-syn activates microglia that initiates or enhances nigral neurodegeneration.19, 20, 21 Although the toxic effects of exogenous recombinant α-syn have been thoroughly investigated in different cellular models,7, 17, 18, 22, 23, 24, 25 the relative contribution of monomeric, oligomeric and fibrillar forms of α-syn to the overall toxicity remains controversial. Therefore, the identification of toxic α-syn species and the molecular mechanisms by which they contribute to neurodegeneration is required to better understand how extracellular α-syn contributes to PD pathogenesis and to develop novel strategies for the diagnosis and treatment of PD and other synucleinopathies. In our study we explored the relationship between neurotoxicity and the aggregation state or amyloid formation propensity of α-syn in various cellular models.  相似文献   
183.
Variations in photosynthesis still cause substantial uncertainties in predicting photosynthetic CO2 uptake rates and monitoring plant stress. Changes in actual photosynthesis that are not related to greenness of vegetation are difficult to measure by reflectance based optical remote sensing techniques. Several activities are underway to evaluate the sun‐induced fluorescence signal on the ground and on a coarse spatial scale using space‐borne imaging spectrometers. Intermediate‐scale observations using airborne‐based imaging spectroscopy, which are critical to bridge the existing gap between small‐scale field studies and global observations, are still insufficient. Here we present the first validated maps of sun‐induced fluorescence in that critical, intermediate spatial resolution, employing the novel airborne imaging spectrometer HyPlant. HyPlant has an unprecedented spectral resolution, which allows for the first time quantifying sun‐induced fluorescence fluxes in physical units according to the Fraunhofer Line Depth Principle that exploits solar and atmospheric absorption bands. Maps of sun‐induced fluorescence show a large spatial variability between different vegetation types, which complement classical remote sensing approaches. Different crop types largely differ in emitting fluorescence that additionally changes within the seasonal cycle and thus may be related to the seasonal activation and deactivation of the photosynthetic machinery. We argue that sun‐induced fluorescence emission is related to two processes: (i) the total absorbed radiation by photosynthetically active chlorophyll; and (ii) the functional status of actual photosynthesis and vegetation stress.  相似文献   
184.
185.
Activation of the β2-adrenoceptor (β2-AR) elicits an endothelial nitric oxide synthase (eNOS)-dependent relaxation in mouse pulmonary artery, which, contrary to the muscarinic receptor-dependent relaxation, is preserved in hypoxic pulmonary arterial hypertension. We therefore characterized the signaling pathways underlying the β2-AR-mediated eNOS activation, with special focus on Gi/o proteins, protein kinases and caveolae. Functional studies (for evaluation of vasorelaxant response), Western blotting (for assessment of eNOS and caveolin-1 phosphorylation) and transmission electron microscopy (for visualization of caveolae) were conducted in pulmonary arteries from wild-type or caveolin-1 knockout mice. In wild-type isolated arteries, relaxation to the selective β2-AR agonist procaterol was reduced by inhibitors of Gi/o proteins (pertussis toxin, PTX), phosphatidylinositol 3-kinase (PI3K; wortmannin or LY 294002), Akt (Akt inhibitor X) and Src-kinase (PP2) and by cholesterol depletion (using methyl-β-cyclodextrin). Procaterol induced eNOS phosphorylation at Ser1177, which was prevented by PTX, PP2 or Akt inhibitor. Procaterol also promoted caveolin-1 phosphorylation at Tyr14, which was decreased by PTX or PP2. Caveolin-1 gene deletion resulted in endothelial caveolae disruption in mouse pulmonary artery and in potentiation of procaterol-induced relaxation. Unlike procaterol, acetylcholine-induced relaxation was unaffected by PTX, methyl-β-cyclodextrin or caveolin-1 gene deletion. To conclude, the mouse pulmonary endothelial β2-AR is coupled to a Gi/o-Src kinase-PI3K/Akt pathway to promote eNOS phosphorylation at Ser1177 leading to a NO-dependent vasorelaxation. Caveolin-1 exerts a negative control on this response that is abrogated by its phosphorylation at Tyr14, through a Gi/o-Src kinase pathway. Since pulmonary β2-AR- and muscarinic receptor-mediated relaxations differentiate in their respective signaling pathways leading to eNOS activation and sensitivities during hypoxia-induced pulmonary arterial hypertension, mechanisms underlying eNOS activation might be key determinants of pulmonary endothelial dysfunction.  相似文献   
186.
Pyocyanin is an important redox toxin produced by the common human pathogen Pseudomonas aeruginosa. It generates reactive oxygen species (ROS) that alter intracellular redox status and cell function. Reducing equivalents for pyocyanin are provided by intracellular NAD(P)H and, it has been reported, glutathione (GSH). Cellular GSH levels are at least 1-2 orders of magnitude greater than NAD(P)H; therefore GSH should represent the major reductant for pyocyanin and potentiate its toxicity. Paradoxically, GSH has been found to inhibit pyocyanin toxicity in cellular models. This study was undertaken to evaluate the potential of GSH as a biologically relevant reductant for pyocyanin. As observed using spectrophotometry, under aerobic conditions pyocyanin readily oxidized NADPH, whereas oxidation of GSH could not be detected. Under anaerobic conditions pyocyanin was reduced by NADPH, but reduction by GSH could not be detected. Reduction of molecular oxygen and the formation of ROS readily proceeded in the presence of pyocyanin and NADPH, whereas GSH was without effect. Finally, exposure of normal human dermal fibroblasts to subcytotoxic concentrations of pyocyanin did not lead to depletion of endogenous GSH, but exogenous GSH provided protection against the senescence-inducing effects of the toxin. In summary, GSH does not reduce pyocyanin under physiologically relevant conditions or contribute to pyocyanin toxicity. However, GSH does provide protection against the deleterious effects of this important bacterial toxin on mammalian cells.  相似文献   
187.
A series of 1,1-diarylalkene derivatives were prepared to optimize the properties of CC-5079 (1), a dual inhibitor of tubulin polymerization and phosphodiesterase 4 (PDE4). By using the 3-ethoxy-4-methoxyphenyl PDE4 pharmacophore as one of the aromatic rings, a significant improvement in PDE4 inhibition was achieved. Compound 28 was identified as a dual inhibitor with potent PDE4 (IC(50)=54 nM) and antitubulin activity (HCT-116 IC(50)=34 nM and tubulin polymerization IC(50) ~1 μM). While the nitrile group at the alkene terminus was generally required for potent antiproliferative activity, its replacement was tolerated if there was a hydroxyl or amino group on one of the aryl rings. Conveniently, this group could also serve as a handle for amino acid derivatization to improve the compounds' solubility. The glycinamide analog 45 showed significant efficacy in the HCT-116 xenograft model, with 64% inhibition of tumor growth upon dosing at 20 mg/kg qd.  相似文献   
188.
Human herpesvirus 8 (HHV-8) persists as episomal DNA in latently-infected cells and can establish two alternative life cycles, latent or lytic. 12-O-tetradecanoyl-phorbol-13-acetate (TPA) is a known inducer of HHV-8 in several human primary effusion lymphoma cell lines and has been widely used for HHV-8 reactivation; however, induction conditions have differed, resulting in varying levels of virus expression. We have used HHV-8 latently-infected BC-3 cells as a model to determine critical parameters for optimizing virus reactivation by TPA. We found that cell growth properties and drug treatment conditions were important for maximum reactivation of HHV-8. Addition of TPA to cells in the early log phase of a sigmoidal growth curve, which was tightly associated with high percentage of the cells in early S phase and with lower histone deacetylase activity in the cells, provided the optimum cell conditions for latent virus to switch to lytic replication. Furthermore, increasing TPA concentration (up to 320 ng per ml) at 48 h exposure time resulted in increased virus production. The results demonstrate the use of a step-wise strategy with chemical induction that may facilitate broad detection of latent DNA viruses and novel virus discovery.  相似文献   
189.
We introduce an approach for detection of drug-protein interactions that combines a new yeast three-hybrid screening for identification of interactions with affinity chromatography for their unambiguous validation. We applied the methodology to the profiling of clinically approved drugs, resulting in the identification of previously known and unknown drug-protein interactions. In particular, we were able to identify off-targets for erlotinib and atorvastatin, as well as an enzyme target for the anti-inflammatory drug sulfasalazine. We demonstrate that sulfasalazine and its metabolites, sulfapyridine and mesalamine, are inhibitors of the enzyme catalyzing the final step in the biosynthesis of the cofactor tetrahydrobiopterin. The interference with tetrahydrobiopterin metabolism provides an explanation for some of the beneficial and deleterious properties of sulfasalazine and furthermore suggests new and improved therapies for the drug. This work thus establishes a powerful approach for drug profiling and provides new insights in the mechanism of action of clinically approved drugs.  相似文献   
190.
Question: Which environmental variables affect floristic species composition of acid grasslands in the Atlantic biogeographic region of Europe along a gradient of atmospheric N deposition? Location: Transect across the Atlantic biogeographic region of Europe including Ireland, Great Britain, Isle of Man, France, Belgium, The Netherlands, Germany, Norway, Denmark and Sweden. Materials and Methods: In 153 acid grasslands we assessed plant and bryophyte species composition, soil chemistry (pH, base cations, metals, nitrate and ammonium concentrations, total C and N, and Olsen plant available phosphorus), climatic variables, N deposition and S deposition. Ordination and variation partitioning were used to determine the relative importance of different drivers on the species composition of the studied grasslands. Results: Climate, soil and deposition variables explained 24% of the total variation in species composition. Variance partitioning showed that soil variables explained the most variation in the data set and that climate and geographic variables accounted for slightly less variation. Deposition variables (N and S deposition) explained 9.8% of the variation in the ordination. Species positively associated with N deposition included Holcus mollis and Leontodon hispidus. Species negatively associated with N deposition included Agrostis curtisii, Leontodon autumnalis, Campanula rotundifolia and Hylocomium splendens. Conclusion: Although secondary to climate gradients and soil biogeochemistry, and not as strong as for species richness, the impact of N and S deposition on species composition can be detected in acid grasslands, influencing community composition both directly and indirectly, presumably through soil‐mediated effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号