首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1827篇
  免费   230篇
  2022年   10篇
  2021年   18篇
  2020年   20篇
  2019年   20篇
  2018年   23篇
  2017年   22篇
  2016年   32篇
  2015年   55篇
  2014年   76篇
  2013年   66篇
  2012年   96篇
  2011年   96篇
  2010年   66篇
  2009年   66篇
  2008年   85篇
  2007年   106篇
  2006年   91篇
  2005年   69篇
  2004年   71篇
  2003年   71篇
  2002年   69篇
  2001年   68篇
  2000年   59篇
  1999年   48篇
  1998年   31篇
  1997年   26篇
  1996年   25篇
  1995年   12篇
  1994年   12篇
  1993年   15篇
  1992年   29篇
  1991年   36篇
  1990年   32篇
  1989年   39篇
  1988年   32篇
  1987年   34篇
  1986年   21篇
  1985年   36篇
  1984年   26篇
  1983年   28篇
  1982年   15篇
  1981年   14篇
  1980年   16篇
  1979年   13篇
  1978年   15篇
  1977年   19篇
  1975年   19篇
  1974年   12篇
  1973年   8篇
  1972年   9篇
排序方式: 共有2057条查询结果,搜索用时 31 毫秒
131.
Several purine and pyrimidine cyclonucleosides were found to be not recognized by several Escherichia coli and yeast DNA N-glycosylases. Interestingly, a non covalent complex was observed between the Lactoccocus lactis formamidopyrimidine-DNA glycosylases (Fpg-Ll) and the cyclonucleosides. This may provide new information on the mechanism involved in the activity of the latter enzyme.  相似文献   
132.
133.
While CpG methylation can be readily analyzed at the DNA sequence level in wild-type and mutant cells, the actual DNA (cytosine-5) methyltransferases (DNMTs) responsible for in vivo methylation on genomic DNA are less tractable. We used an antibody-based method to identify specific endogenous DNMTs (DNMT1, DNMT1b, DNMT2, DNMT3a, and DNMT3b) that stably and selectively bind to genomic DNA containing 5-aza-2'-deoxycytidine (aza-dC) in vivo. Selective binding to aza-dC-containing DNA suggests that the engaged DNMT is catalytically active in the cell. DNMT1b is a splice variant of the predominant maintenance activity DNMT1, while DNMT2 is a well-conserved protein with homologs in plants, yeast, Drosophila, humans, and mice. Despite the presence of motifs essential for transmethylation activity, catalytic activity of DNMT2 has never been reported. The data here suggest that DNMT2 is active in vivo when the endogenous genome is the target, both in human and mouse cell lines. We quantified relative global genomic activity of DNMT1, -2, -3a, and -3b in a mouse teratocarcinoma cell line. DNMT1 and -3b displayed the greatest in vivo binding avidity for aza-dC-containing genomic DNA in these cells. This study demonstrates that individual DNMTs can be tracked and that their binding to genomic DNA can be quantified in mammalian cells in vivo. The different DNMTs display a wide spectrum of genomic DNA-directed activity. The use of an antibody-based tracking method will allow specific DNMTs and their DNA targets to be recovered and analyzed in a physiological setting in chromatin.  相似文献   
134.
Thalidomide, (1), has made a remarkable comeback from its days of a sedative with teratogenic properties due to its ability to selectively inhibit TNF-alpha, a key pro-inflammatory cytokine and its clinical benefit in the treatment of cancer. Thalidomide contains one chiral center and is known to be chirally unstable under in vitro and in vivo conditions. It has been hypothesized that different biological properties are associated with each isomer. Thus, chirally stable analogues of thalidomide, alpha-fluorothalidomide, (3) and alpha-fluoro-4-aminothalidomide (4) were prepared by electrophilic fluorination. Analogue 3 was found to be cytotoxic and did not inhibit TNF-alpha production in LPS stimulated hPBMC below toxic concentrations. On the other hand, 4 was non-cytotoxic at the tested concentrations and was found to be 830-fold more potent than thalidomide as TNF-alpha inhibitor.  相似文献   
135.
8-Oxoguanine (8-oxoG), induced by reactive oxygen species and arguably one of the most important mutagenic DNA lesions, is prone to further oxidation. Its one-electron oxidation products include potentially mutagenic guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) because of their mispairing with A or G. All three oxidized base-specific DNA glycosylases of Escherichia coli, namely endonuclease III (Nth), 8-oxoG-DNA glycosylase (MutM) and endonuclease VIII (Nei), excise Gh and Sp, when paired with C or G in DNA, although Nth is less active than the other two. MutM prefers Sp and Gh paired with C (kcat/Km of 0.24–0.26 min–1 nM–1), while Nei prefers G over C as the complementary base (kcat/Km 0.15–0.17 min–1 nM–1). However, only Nei efficiently excises these paired with A. MutY, a 8-oxoG·A(G)-specific A(G)-DNA glycosylase, is inactive with Gh(Sp)·A/G-containing duplex oligonucleotide, in spite of specific affinity. It inhibits excision of lesions by MutM from the Gh·G or Sp·G pair, but not from Gh·C and Sp·C pairs. In contrast, MutY does not significantly inhibit Nei for any Gh(Sp) base pair. These results suggest a protective function for MutY in preventing mutation as a result of A (G) incorporation opposite Gh(Sp) during DNA replication.  相似文献   
136.
137.
138.
Changing the angular separation between two visual stimuli attached to the wall of a recording cylinder causes the firing fields of place cells to move relative to each other, as though the representation of the floor undergoes a topological distortion. The displacement of the firing field center of each cell is a vector whose length is equal to the linear displacement and whose angle indicates the direction that the field center moves in the environment. Based on the observation that neighboring fields move in similar ways, whereas widely separated fields tend to move relative to each other, we develop an empirical vector-field model that accounts for the stated effects of changing the card separation. We then go on to show that the same vector-field equation predicts additional aspects of the experimental results. In one example, we demonstrate that place cell firing fields undergo distortions of shape after the card separation is changed, as though different parts of the same field are affected by the stimulus constellation in the same fashion as fields at different locations. We conclude that the vector-field formalism reflects the organization of the place-cell representation of the environment for the current case, and through suitable modification may be very useful for describing motions of firing patterns induced by a wide variety of stimulus manipulations.  相似文献   
139.
One calcium-binding site (site I) and a second poorly defined metal-binding site (site II) have been observed previously within the amino-terminal laminin G-like domain (G domain) of human sex hormone-binding globulin (SHBG). By soaking crystals of this structure in 2.5 mm ZnCl(2), site II and a new metal-binding site (site III) were found to bind Zn(2+). Site II is located close to the steroid-binding site, and Zn(2+) is coordinated by the side chains of His(83) and His(136) and the carboxylate group of Asp(65). In this site, Zn(2+) prevents Asp(65) from interacting with the steroid 17beta-hydroxy group and alters the conformations of His(83) and His(136), as well as a disordered region over the steroid-binding site. Site III is formed by the side chains of His(101) and the carboxylate group of Asp(117), and the distance between them (2.7 A) is increased to 3.7 A in the presence of Zn(2+). The affinity of SHBG for estradiol is reduced in the presence of 0. 1-1 mm Zn(2+), whereas its affinity for androgens is unchanged, and chemically-related metal ions (Cd(2+) and Hg(2+)) have similar but less pronounced effects. This is not observed when Zn(2+) coordination at site II is modified by substituting Gln for His(136). An alteration in the steroid-binding specificity of human SHBG by Zn(2+) occupancy of site II may be relevant in male reproductive tissues where zinc concentrations are very high.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号