首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   521篇
  免费   57篇
  2021年   8篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   8篇
  2016年   8篇
  2015年   21篇
  2014年   18篇
  2013年   23篇
  2012年   38篇
  2011年   46篇
  2010年   25篇
  2009年   20篇
  2008年   31篇
  2007年   24篇
  2006年   28篇
  2005年   18篇
  2004年   18篇
  2003年   19篇
  2002年   15篇
  2001年   19篇
  2000年   21篇
  1999年   21篇
  1998年   10篇
  1997年   8篇
  1996年   3篇
  1995年   8篇
  1994年   4篇
  1993年   4篇
  1992年   8篇
  1991年   9篇
  1990年   7篇
  1989年   7篇
  1988年   8篇
  1987年   5篇
  1986年   7篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1981年   2篇
  1980年   5篇
  1979年   4篇
  1978年   2篇
  1977年   6篇
  1976年   2篇
  1974年   4篇
  1971年   3篇
  1947年   1篇
  1936年   1篇
  1933年   1篇
排序方式: 共有578条查询结果,搜索用时 15 毫秒
161.
Sucrose polyester, a fat substitute, has shown promise in reducing blood cholesterol and body weight of obese individuals. Effects of this compound in the Zucker rat, a genetic model of obesity, are unknown. Thus, we examined food intake, body weight, body composition, and several metabolic parameters in sera of lean and obese female Zucker rats. Eight-week-old lean and obese animals were given a choice between a control diet (15% corn oil) and fat substitute diet (5% corn oil and 10% sucrose polyester) for 2 days. Next, one-half of the lean and obese groups received control diet; the remaining lean and obese rats received fat substitute diet for 18 days. Cumulative food intake was depressed in fat substitute groups relative to control-fed animals; however, this effect was more predominant in obese animals. Obese rats consuming fat substitute diet (O-FS) gained less weight as compared to obese control-fed animals (O-C). Lean rats given fat substitute (L-FS) did not have significantly different body weights as compared to the L-C group. Fat substitute groups, combined, had lower body fat and higher body water as compared to controls. The O-FS group had lower serum glucose and insulin and higher fatty acid levels compared to the O-C group. There were no differences in serum cholesterol, HDL, or triglyceride levels due to fat substitute diet. These data suggest that the obese Zucker rat is unable to defend its body weight when dietary fat is replaced with sucrose polyester.  相似文献   
162.
Roots grown in an applied electric field demonstrate a bidirectional curvature. To further understand the nature of this response and its implications for the regulation of differential growth, we applied an electric field to roots growing in microgravity. We found that growth rates of roots in microgravity were higher than growth rates of ground controls. Immediately upon application of the electric field, root elongation was inhibited. We interpret this result as an indication that, in the absence of a gravity stimulus, the sensitivity of the root to an applied electric stimulus is increased. Further space experiments are required to determine the extent to which this sensitivity is shifted. The implications of this result are discussed in relation to gravitropic signaling and the regulation of differential cell elongation in the root.  相似文献   
163.
XRCC1 (X-ray cross-complementing group 1) is a DNA repair protein that forms complexes with DNA polymerase β (β-Pol), DNA ligase III and poly-ADP-ribose polymerase in the repair of DNA single strand breaks. The domains in XRCC1 have been determined, and characterization of the domain–domain interaction in the XRCC1-β-Pol complex has provided information on the specificity and mechanism of binding. The domain structure of XRCC1, determined using limited proteolysis, was found to include an N-terminal domain (NTD), a central BRCT-I (breast cancer susceptibility protein-1) domain and a C-terminal BRCT-II domain. The BRCT-Ilinker–BRCT-II C-terminal fragment and the linker–BRCT-II C-terminal fragment were relatively stable to proteolysis suggestive of a non-random conformation of the linker. A predicted inner domain was found not to be stable to proteolysis. Using cross-linking experiments, XRCC1 was found to bind intact β-Pol and the β-Pol 31 kDa domain. The XRCC1-NTD1–183 (residues 1183) was found to bind β-Pol, the β-Pol 31 kDa domain and the β-Pol C-terminal palm-thumb (residues 140–335), and the interaction was further localized to XRCC1-NTD1–157 (residues 1–157). The XRCC1-NTD1–183-β-Pol 31 kDa domain complex was stable at high salt (1 M NaCl) indicative of a hydrophobic contribution. Using a yeast two-hybrid screen, polypeptides expressed from two XRCC1 constructs, which included residues 36–355 and residues 1–159, were found to interact with β-Pol, the β-Pol 31 kDa domain, and the β-Pol C-terminal thumb-only domain polypeptides expressed from the respective β-Pol constructs. Neither the XRCC1-NTD1–159, nor the XRCC136–355 polypeptide was found to interact with a β-Pol thumbless polypeptide. A third XRCC1 polypeptide (residues 75–212) showed no interaction with β-Pol. In quantitative gel filtration and analytical ultracentrifugation experiments, the XRCC1-NTD1–183 was found to bind β-Pol and its 31 kDa domain in a 1:1 complex with high affinity (Kd of 0.4–2.4 µM). The combined results indicate a thumb-domain specific 1:1 interaction between the XRCC1-NTD1–159 and β-Pol that is of an affinity comparable to other binding interactions involving β-Pol.  相似文献   
164.
Mullen JR  Kaliraman V  Brill SJ 《Genetics》2000,154(3):1101-1114
SGS1 in yeast encodes a DNA helicase with homology to the human BLM and WRN proteins. This group of proteins is characterized by a highly conserved DNA helicase domain homologous to Escherichia coli RecQ and a large N-terminal domain of unknown function. To determine the role of these domains in SGS1 function, we constructed a series of truncation and helicase-defective (-hd) alleles and examined their ability to complement several sgs1 phenotypes. Certain SGS1 alleles showed distinct phenotypes: sgs1-hd failed to complement the MMS hypersensitivity and hyper-recombination phenotypes, but partially complemented the slow-growth suppression of top3 sgs1 strains and the top1 sgs1 growth defect. Unexpectedly, an allele that encodes the amino terminus alone showed essentially complete complementation of the hyper-recombination and top1 sgs1 defects. In contrast, an allele encoding the helicase domain alone was unable to complement any sgs1 phenotype. Small truncations of the N terminus resulted in hyper-recombination and slow-growth phenotypes in excess of the null allele. These hypermorphic phenotypes could be relieved by deleting more of the N terminus, or in some cases, by a point mutation in the helicase domain. Intragenic complementation experiments demonstrate that both the amino terminus and the DNA helicase are required for full SGS1 function. We conclude that the amino terminus of Sgs1 has an essential role in SGS1 function, distinct from that of the DNA helicase, with which it genetically interacts.  相似文献   
165.
The site-specific DNA recombinase, gammadelta resolvase, from Escherichia coli catalyzes recombination of res site-containing plasmid DNA to two catenated circular DNA products. The catalytic domain (residues 1-105), lacking a C-terminal dimerization interface, has been constructed and the NMR solution structure of the monomer determined. The RMSD of the NMR conformers for residues 2-92 excluding residues 37-45 and 64-73 is 0.41 A for backbone atoms and 0.88 A for all heavy atoms. The NMR solution structure of the monomeric catalytic domain (residues 1-105) was found to be formed by a four-stranded parallel beta-sheet surrounded by three helices. The catalytic domain (residues 1-105), deficient in the C-terminal dimerization domain, was monomeric at high salt concentration, but displayed unexpected dimerization at lower ionic strength. The unique solution dimerization interface at low ionic strength was mapped by NMR. With respect to previous crystal structures of the dimeric catalytic domain (residues 1-140), differences in the average conformation of active-site residues were found at loop 1 containing the catalytic S10 nucleophile, the beta1 strand containing R8, and at loop 3 containing D67, R68 and R71, which are required for catalysis. The active-site loops display high-frequency and conformational backbone dynamics and are less well defined than the secondary structures. In the solution structure, the D67 side-chain is proximal to the S10 side-chain making the D67 carboxylate group a candidate for activation of S10 through general base catalysis. Four conserved Arg residues can function in the activation of the phosphodiester for nucleophilic attack by the S10 hydroxyl group. A mechanism for covalent catalysis by this class of recombinases is proposed that may be related to dimer interface dissociation.  相似文献   
166.
B cell activating factor (BAFF), a ligand belonging to the tumor necrosis factor (TNF) family, plays a critical role in regulating survival and activation of peripheral B cell populations and has been associated with autoimmune disease. BAFF is known to interact with three receptors, BCMA, TACI and BAFF-R, that have distant similarities with other receptors of the TNF family. We have determined the crystal structure of the TNF-homologous domain of BAFF at 2.8 A resolution. The structure reveals significant differences when compared to other TNF family members, including an unusually long D-E loop that participates in the formation of a deep, concave and negatively charged region in the putative receptor binding site. The BAFF structure was further used to generate a homology model of APRIL, a closely related TNF family ligand that also binds to BCMA and TACI, but not BAFF-R. Analysis of the putative receptor binding sites of BAFF and APRIL suggests that differences in the D-E loop structure and electrostatic surface potentials may be important for determining binding specificities for BCMA, TACI and BAFF-R.  相似文献   
167.
The Saccharomyces cerevisiae Sgs1 protein is a member of the RecQ family of DNA helicases and is required for genome stability, but not cell viability. To identify proteins that function in the absence of Sgs1, a synthetic-lethal screen was performed. We obtained mutations in six complementation groups that we refer to as SLX genes. Most of the SLX genes encode uncharacterized open reading frames that are conserved in other species. None of these genes is required for viability and all SLX null mutations are synthetically lethal with mutations in TOP3, encoding the SGS1-interacting DNA topoisomerase. Analysis of the null mutants identified a pair of genes in each of three phenotypic classes. Mutations in MMS4 (SLX2) and SLX3 generate identical phenotypes, including weak UV and strong MMS hypersensitivity, complete loss of sporulation, and synthetic growth defects with mutations in TOP1. Mms4 and Slx3 proteins coimmunoprecipitate from cell extracts, suggesting that they function in a complex. Mutations in SLX5 and SLX8 generate hydroxyurea sensitivity, reduced sporulation efficiency, and a slow-growth phenotype characterized by heterogeneous colony morphology. The Slx5 and Slx8 proteins contain RING finger domains and coimmunoprecipitate from cell extracts. The SLX1 and SLX4 genes are required for viability in the presence of an sgs1 temperature-sensitive allele at the restrictive temperature and Slx1 and Slx4 proteins are similarly associated in cell extracts. We propose that the MMS4/SLX3, SLX5/8, and SLX1/4 gene pairs encode heterodimeric complexes and speculate that these complexes are required to resolve recombination intermediates that arise in response to DNA damage, during meiosis, and in the absence of SGS1/TOP3.  相似文献   
168.
169.
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号