首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   7篇
  91篇
  2022年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   6篇
  2012年   3篇
  2009年   1篇
  2008年   2篇
  2007年   5篇
  2006年   2篇
  2005年   7篇
  2004年   5篇
  2003年   5篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1998年   2篇
  1997年   7篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1989年   2篇
  1987年   2篇
  1986年   2篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1874年   1篇
排序方式: 共有91条查询结果,搜索用时 0 毫秒
71.
We analyzed 34 strains representing 25 species of Chrysophyceae for chlorophylls c1 and c2 using thin-layer chromatography. Most organisms had both chlorophylls c1 and c2 in addition to chlorophyll a but 17 strains of 9 species of Synura and Mallomonas possessed only chlorophylls a and c1. These are the first chlorophyll c-bearing algae which lack chlorophyll c2. We postulate that at least some of the silica-scaled algae including Mallomonas and Synura may be distinct from other Chrysophyceae based upon pigmentation and other characters described in the literature.  相似文献   
72.
Mechanistic information about tropical canopy function is emerging at the leaf, tree, stand and landscape levels. With improved canopy access, comprehensive data are accumulating about seasonal and spatial variation in light, temperature and humidity, and corresponding variation in leaf carbon gain and water loss. At the whole-plant level, simultaneous measurements at different spatial scales have revealed the role of boundary layer dynamics in regulating transpiration. Emergent properties of canopy function are being explored through models that integrate leaf and landscape-level exchange processes. Integration of exchange processes that include functional diversity at different scales has the potential to validate regional estimates of gas exchange, which are critical to our understanding of the role of tropical forests in global atmospheric carbon balance.  相似文献   
73.
74.
The changes in membrane structure of rabbit polymorphonuclear (PMN) leukocytes during bacterial phagocytosis was investigated with scanning electron microscope (SEM), thin-section, and freeze-fracture techniques. SEM observations of bacterial attachment sites showed the involvement of limited areas of PMN membrane surface (0.01-0.25μm(2)). Frequently, these areas of attachment were located on membrane extensions. The membrane extensions were present before, during, and after the engulfment of bacteria, but were diminished in size after bacterial engulfment. In general, the results obtained with SEM and thin-section techniques aided in the interpretation of the three-dimensional freeze-fracture replicas. Freeze-fracture results revealed the PMN leukocytes had two fracture faces as determined by the relative density of intramembranous particles (IMP). Membranous extensions of the plasma membrane, lysosomes, and phagocytic vacuoles contained IMP's with a distribution and density similar to those of the plasma membrane. During phagocytosis, IMPs within the plasma membrane did not undergo a massive aggregation. In fact, structural changes within the membranes were infrequent and localized to regions such as the attachment sites of bacteria, the fusion sites on the plasma membrane, and small scale changes in the phagocytic vacuole membrane during membrane fusion. During the formation of the phagocytic vacuole, the IMPs of the plasma membrane appeared to move in with the lipid bilayer while maintaining a distribution and density of IMPs similar to those of the plasma membranes. Occasionally, IMPs were aligned to linear arrays within phagocytic vacuole membranes. This alignment might be due to an interaction with linearly arranged motile structures on the side of the phagocytic vacuole membranes. IMP-free regions were observed after fusion of lysosomes with the phagocytic vacuoles or plasma membrane. These IMP-free areas probably represent sites where membrane fusion occurred between lysosomal membrane and phagocytic vacuole membrane or plasma membrane. Highly symmetrical patterns of IMPs were not observed during lysosomal membrane fusion.  相似文献   
75.
Switchgrass (Panicum virgatum L.), big bluestem (Andropogon gerardii Vitman), and indiangrass (Sorghastrum nutans (L.) Nash) are native warm-season grasses commonly used for pasture, hay, and conservation. More recently switchgrass has also been identified as a potential biomass energy crop, but management of mixtures of these species for biomass is not well documented. Therefore, the objectives of our study were to: (1) determine the effects of harvest timing and N rate on yield and biomass characteristics of established warm-season grass stands containing a mixture of switchgrass, big bluestem, and indiangrass, and (2) evaluate the impact of harvest management on species composition. Five N rates (0, 56, 112, and 224 kg ha(-1) applied annually in spring and 224 kg ha(-1) evenly split between spring and fall) and two harvest timings (anthesis and killing frost) were applied to plots at two South Dakota USA locations from 2001 to 2003. Harvesting once a year shortly after a killing frost produced the greatest yields with high concentrations of neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) along with lower concentrations of total nitrogen (TN) and ash. This harvest timing also allowed for the greatest percentage of desirable species while maintaining low grass weed percentages. While N rates of 56 and 112 kg ha(-1) tended to increase total biomass without promoting severe invasion of grass and broadleaf weed species, N application did not always result in significant increases in biomass production. Based on these results, mixtures of switchgrass and big bluestem were well suited for sustainable biomass energy production. Furthermore, N requirements of these mixtures were relatively low thus reducing production input costs.  相似文献   
76.
The effect of leaf age on photosynthetic capacity, a critical parameter in the theory of optimal leaf longevity, was studied for two tropical pioneer tree species, Cecropia longipes and Urera caracasana, in a seasonally dry forest in Panama. These species continuously produce short-lived leaves (74 and 93 d, respectively) during the rainy season (May-December) on orthotropic branches. However, they differ in leaf production rate, maximum number of leaves per branch, light environment experienced by the leaves, leaf mass per unit area, and nitrogen content. Light-saturated photosynthetic rates for marked leaves of known ages (±1 wk) were measured with two contrasting schemes (repeated measurements vs. chronosequence within branch), which overall produced similar results. In both species, photosynthetic rates and nitrogen use efficiency were negatively correlated with leaf age and positively correlated with light availability. Photosynthetic rates declined faster with leaf age in Cecropia than in Urera as predicted by the theory. The rate of decline was faster for leaves on branches with faster leaf turnover rates. Nitrogen per unit leaf area decreased with leaf age only for Urera. Leaf mass per unit area increased with leaf age, either partly (in Cecropia) or entirely (in Urera) due to ash accumulation.  相似文献   
77.
Hyperoxia, a model of oxidative stress, can disrupt brain stem function, presumably by an increase in O2 free radicals. Breathing hyperbaric oxygen (HBO2) initially causes hyperoxic hyperventilation, whereas extended exposure to HBO2 disrupts cardiorespiratory control. Presently, it is unknown how hyperoxia affects brain stem neurons. We have tested the hypothesis that hyperoxia increases excitability of neurons of the solitary complex neurons, which is an important region for cardiorespiratory control and central CO2/H+ chemoreception. Intracellular recordings were made in rat medullary slices during exposure to 2-3 atm of HBO2, HBO2 plus antioxidant (Trolox C), and chemical oxidants (N-chlorosuccinimide, chloramine-T). HBO2 increased input resistance and stimulated firing rate in 38% of neurons; both effects of HBO2 were blocked by antioxidant and mimicked by chemical oxidants. Hypercapnia stimulated 32 of 60 (53%) neurons. Remarkably, these CO2/H+-chemosensitive neurons were preferentially sensitive to HBO2; 90% of neurons sensitive to HBO2 and/or chemical oxidants were also CO2/H+ chemosensitive. Conversely, only 19% of HBO2-insensitive neurons were CO2/H+ chemosensitive. We conclude that hyperoxia decreases membrane conductance and stimulates firing of putative central CO2/H+-chemoreceptor neurons by an O2 free radical mechanism. These findings may explain why hyperoxia, paradoxically, stimulates ventilation.  相似文献   
78.
Using optical and photosynthetic assays from a canopy access crane, we examined the photosynthetic performance of tropical dry forest canopies during the dry season in Parque Metropolitano, Panama City, Panama. Photosynthetic gas exchange, chlorophyll fluorescence, and three indices derived from spectral reflectance (the normalized difference vegetation index, the simple ratio, and the photochemical reflectance index) were used as indicators of structural and physiological components of photosynthetic activity. Considerable interspecific variation was evident in structural and physiological behavior in this forest stand, which included varying degrees of foliage loss, altered leaf orientation, stomatal closure, and photosystem II downregulation. The normalized difference vegetation index and the simple ratio were closely related to canopy structure and absorbed radiation for most species, but failed to capture the widely divergent photosynthetic behavior among evergreen species exhibiting various degrees of downregulation. The photochemical reflectance index and chlorophyll fluorescence were related indicators of photosynthetic downregulation, which was not detectable with the normalized difference vegetation index or simple ratio. These results suggest that remote sensing methods that ignore downregulation cannot capture within‐stand variability in actual carbon flux for this diverse forest type. Instead, these findings support a sampling approach that derives photosynthetic fluxes from a consideration of both canopy light absorption (e.g., normalized difference vegetation index) and photosynthetic light‐use efficiency (e.g., photochemical reflectance index). Such sampling should improve our understanding of controls on photosynthetic carbon uptake in diverse tropical forest stands.  相似文献   
79.
We used automated sperm morphology analysis to investigate rat sperm morphometry and morphology in Sprague-Dawley and Wistar rats in three research centers to develop normal baseline values for sperm morphometry and to quantify the percentage of morphologically normal sperm in healthy rats. The participating centers were IRSN in Paris, France (Sprague-Dawley rats), University of the Western Cape, South Africa (Wistar rats) and Stellenbosch University (Wistar rats), South Africa. All three centers used identical sperm isolation techniques from the cauda epididymis, the same staining protocols, identical computer-aided sperm morphometry analysis (CASMA) software and microscopes with similar optics. With CASMA, fully automated analysis of the different parts of stained sperm, e.g., head, acrosome, mid-piece, can be performed, many sperm morphometric features can be measured accurately and eventually normal sperm morphology can be defined. We found that it is possible to distinguish sperm morphometric characteristics of Sprague-Dawley and Wistar rats. We also developed cut-off values for evaluating the percentage normal sperm in these two rat strains using the automatic analysis mode. Normal sperm morphology varied between 67 and 74% by contrast with previous findings of > 90%.  相似文献   
80.
Typical preparation of seed samples for infrared (IR) microspectroscopy involves imbibition of the seed for varying time periods followed by cryosectioning. Imbibition, however, may initiate germination even at 4° C with associated changes in the chemistry of the sample. We have found that it is possible to section seeds that are sufficiently hard, such as soybeans, on a standard laboratory microtome without imbibition. The use of dry sectioning of unimbibed seeds is reported here, as well as a comparison of different mounting media and modes of analysis. Glycerol, Tissue-Tek, and ethanol were used as mounting media, and the quality of the resulting spectra was assessed. Ethanol was the preferred mountant, because it dried quickly with no residue and thus did not interfere with the spectrum of interest. Analysis in transmission mode using barium fluoride windows to hold the samples was compared with transmission-reflection analysis with sections mounted on special infrared-reflecting slides. The two modes of analysis performed well in different regions of the spectrum. The mode of analysis (transmission vs. transmission-reflection) should be based on the components of greatest interest in the sample.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号