首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   11篇
  2023年   2篇
  2020年   3篇
  2019年   7篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   9篇
  2014年   8篇
  2013年   11篇
  2012年   13篇
  2011年   15篇
  2010年   2篇
  2009年   6篇
  2008年   5篇
  2007年   10篇
  2006年   6篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1993年   3篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1976年   2篇
  1974年   1篇
  1971年   1篇
  1966年   1篇
  1960年   2篇
  1927年   1篇
排序方式: 共有166条查询结果,搜索用时 31 毫秒
21.
Proteins destined for all submitochondrial compartments are translocated across the outer mitochondrial membrane by the TOM (translocase of the outer membrane) complex, which consists of a number of specialized receptor subunits that bind mitochondrial precursor proteins for delivery into the translocation channel. One receptor, Tom70, binds large, hydrophobic mitochondrial precursors. The current model of Tom70-mediated import involves multiple dimers of the receptor recognizing a single molecule of substrate. Here we show via a battery of biophysical and spectroscopic techniques that the cytosolic domain of Tom70 is an elongated monomer. Thermal and urea-induced denaturation revealed that the receptor, which unfolds via a multistate pathway, is a relatively unstable molecule undergoing major conformational change at physiological temperatures. The data suggest that the malleability of the monomeric Tom70 receptor is an important factor in mitochondrial import.  相似文献   
22.
23.
In this contribution, the synthesis and characterisation of a series of complexes of the type [Ru(L-L′)(CO)2Cl2] are reported, where L-L′ are the chelating ligands L1-L8, 2-(4H-[1,2,4]triazol-3′-yl)-pyridine (L1); 2-(4H-[1,2,4]triazol-3′-yl)-pyrazine; (L2); 2-(1-methyl-4H-[1,2,4]-triazol-3-yl)pyridine (L3); 2-(5-pyridin-2-yl-4H-[1,2,4]-triazole-3-yl)phenol (L4); 3-(5-methylphenyl)-pyridin-2-yl-1,2,4-triazole (L5); 3-(4-methylphenyl)-pyridin-2-yl-1,2,4-triazole (L6); 3-(4-methoxyphenyl)-pyridin-2-yl-1,2,4-triazole (L7); 3,6-bis[(4-methoxyphenyl)iminomethyl]pyridazine (L8). L1-L7 are triazole-based ligands, which provide two distinct bidentate coordinate modes (via N2 or N4 of the triazole) whereas L8 is pyridazine-based and contains two identical bidentate binding pockets. The products obtained are analysed using infrared and NMR spectroscopy. The X-ray and molecular structures of the complexes with the ligands L2, L6, L7 and L8 are reported. These structures are the first to be reported for triazole based ruthenium chloro and ruthenium pyridazine imine complexes. The data show that the triazole ring in L2, L6 and L7 is coordinated via the N2 atom, and that the pyridazine-based ligand L8 uses only one binding pocket hence accommodating only one ruthenium(II) centre. For all compounds the cis(CO)transCl conformation is obtained. The results obtained are compared with those obtained for other similar compounds.  相似文献   
24.
ABSTRACT: BACKGROUND: The contribution of a gene to the fitness of a bacterium can be assayed by whether and to what degree the bacterium tolerates transposon insertions in that gene. We use this fact to compare the fitness of syntenic homologous genes among related Salmonella strains to reveal differences not apparent at the gene sequence level. RESULTS: A transposon Tn5 derivative was used to construct mutants in Salmonella Typhimurium ATCC14028 (STM1) and Salmonella Typhi Ty2 (STY1), which were then grown in rich media. The locations of 234,152 and 53,556 integration sites, respectively, were mapped by sequencing. These data were compared to similar data available for a different Ty2 strain (STY2) and essential genes identified in E. coli K-12 (ECO). Of 277 genes considered essential in ECO, all had syntenic homologs in STM1, STY1, and STY2, and all but nine genes were either devoid of Tn insertions or had very few. For three of these nine genes, part of the annotated gene lacked Tn integrations (yejM, ftsN and murB). At least one of the other six genes, trpS, had a potentially functionally redundant gene encoded elsewhere in Salmonella but not in ECO. An additional 165 genes were almost entirely devoid of transposon integrations in all three Salmonella strains examined, including many genes associated with protein and DNA synthesis. Four of these genes (STM14_1498.L, STM14_2872, STM14_3360.RJ, and STM14_5442) are not found in E. coli. Notable differences in the extent of gene selection were also observed among the three different Salmonella isolates. Mutations in hns, for example, were selected against in STM1 but not in the two STY strains, which have a defect in rpoS rendering hns nonessential. CONCLUSIONS: Comparisons among transposon integration profiles from different members of a species and among related species, all grown in similar conditions, identify differences in gene fitness among syntenic homologous genes. Further differences in fitness profiles among shared genes can be expected in other selective environments, with potential relevance for comparative systems biology.  相似文献   
25.
Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in 15N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (⩽372 nM NO2 d−1) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ∼9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO3 was re-oxidized back to NO3 via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways.  相似文献   
26.
Primary ciliary dyskinesia (PCD) results from ciliary dysfunction and is commonly characterized by sinusitis, male infertility, hydrocephalus, and situs inversus. Mice homozygous for the nm1054 mutation develop phenotypes associated with PCD. On certain genetic backgrounds, homozygous mutants die perinatally from severe hydrocephalus, while mice on other backgrounds have an accumulation of mucus in the sinus cavity and male infertility. Mutant sperm lack mature flagella, while respiratory epithelial cilia are present but beat at a slower frequency than wild-type cilia. Transgenic rescue demonstrates that the PCD in nm1054 mutants results from the loss of a single gene encoding the novel primary ciliary dyskinesia protein 1 (Pcdp1). The Pcdp1 gene is expressed in spermatogenic cells and motile ciliated epithelial cells. Immunohistochemistry shows that Pcdp1 protein localizes to sperm flagella and the cilia of respiratory epithelial cells and brain ependymal cells in both mice and humans. This study demonstrates that Pcdp1 plays an important role in ciliary and flagellar biogenesis and motility, making the nm1054 mutant a useful model for studying the molecular genetics and pathogenesis of PCD.  相似文献   
27.
Tec is the prototypic member of a family of intracellular tyrosine kinases that includes Txk, Bmx, Itk, and Btk. Tec family kinases share similarities in domain structure with Src family kinases, but one of the features that differentiates them is a proline-rich region (PRR) preceding their Src homology (SH) 3 domain. Evidence that the PRR of Itk can bind in an intramolecular fashion to its SH3 domain and the lack of a regulatory tyrosine in the C terminus indicates that Tec kinases must be regulated by a different set of intramolecular interactions to the Src kinases. We have determined the solution structure of the Tec SH3 domain and have investigated interactions with its PRR, which contains two SH3-binding sites. We demonstrate that in vitro, the Tec PRR can bind in an intramolecular fashion to the SH3. However, the affinity is lower than that for dimerization via reciprocal PRR-SH3 association. Using site-directed mutagenesis we show that both sites can bind the Tec SH3 domain; site 1 (155KTLPPAP161) binds intramolecularly, while site 2 (165KRRPPPPIPP174) cannot and binds in an intermolecular fashion. These distinct roles for the SH3 binding sites in Tec family kinases could be important for protein targeting and enzyme activation.  相似文献   
28.
29.
Microsporidia are a group of highly adapted obligate intracellular parasites that are now recognized as close relatives of fungi. Their adaptation to parasitism has resulted in broad and severe reduction at (i) a genomic level by extensive gene loss, gene compaction, and gene shortening; (ii) a biochemical level with the loss of much basic metabolism; and (iii) a cellular level, resulting in lost or cryptic organelles. Consistent with this trend, the mitochondrion is severely reduced, lacking ATP synthesis and other typical functions and apparently containing only a fraction of the proteins of canonical mitochondria. We have investigated the mitochondrial protein import apparatus of this reduced organelle in the microsporidian Encephalitozoon cuniculi and find evidence of reduced and modified machinery. Notably, a putative outer membrane receptor, Tom70, is reduced in length but maintains a conserved structure chiefly consisting of tetratricopeptide repeats. When expressed in Saccharomyces cerevisiae, EcTom70 inserts with the correct topology into the outer membrane of mitochondria but is unable to complement the growth defects of Tom70-deficient yeast. We have scanned genomic data using hidden Markov models for other homologues of import machinery proteins and find evidence of severe reduction of this system.Microsporidia are a eukaryotic group highly adapted as obligate intracellular parasites (31, 50). They infect a diverse range of vertebrate and invertebrate animal hosts. In humans they are the cause of a number of diseases (e.g., gastroenteritis, encephalitis, and hepatitis), having their greatest impact on immunocompromised individuals, notably in children with human immunodeficiency virus (14, 31). Microsporidia are most closely related to fungi, although their high level of specialization as intracellular parasites obscured this relationship for a long time (18, 25, 30). Gene phylogenies now firmly connect these two groups, although it remains uncertain whether microsporidia are sisters to the fungi or represent a lineage derived from within fungal diversity (21, 28).A clear adaptive response to parasitism in microsporidia has been a reduction in cellular complexity. This was first recognized at an ultrastructural level with the apparent lack of peroxisomes, flagella, stacked Golgi bodies, and mitochondria (31). This reductive evolution is mirrored at a genomic level, with microsporidia containing the smallest eukaryotic genomes described to date (28, 29). The complete genomic sequence from the human microsporidian parasite Encephalitozoon cuniculi reveals a genome of only ∼2.9 Mb containing approximately 2,000 genes, in contrast to the 6,000 genes found in the genome of the model fungus Saccharomyces cerevisiae. The minimal genome of E. cuniculi has been achieved through three mechanisms in concert: (i) gene loss, resulting in broad loss of biochemical pathways and capabilities, including much basic energy metabolism and numerous anabolic pathways; (ii) gene compaction with an average intergenic space of ∼130 bp; and (iii) gene shortening, with E. cuniculi genes being on average 14% shorter than their homologues in fungi such as S. cerevisiae (28, 45). Thus, microsporidian evolution has apparently been shaped by a very strong trend to eliminate superfluous molecular and biochemical complexity.Despite earlier suppositions that microsporidia lacked mitochondria, genome and expressed sequence tag data from microsporidia suggested the presence of several proteins typically targeted to this organelle (3, 19, 20, 24, 28, 38). Immunolocalization of a mitochondrial Hsp70 to small double membrane-bound organelles in Trachipleistophora hominis provided strong evidence for the existence of a mitochondrion in microsporidia, albeit a simplified organelle that lacks cisternae (48). Annotation of genomic data from E. cuniculi provided compelling matches for only 22 proteins implicated in mitochondrial function, suggesting that the metabolism of this relict mitochondrion (or mitosome) is also significantly reduced compared to that of canonical mitochondria (28). Further, no mitochondrial genome has been retained; thus, biogenesis of this organelle is wholly dependent on nucleus-encoded proteins. Based on these 22 proteins, a major role for the mitosome is iron-sulfur cluster assembly (22, 28). No genes have been found for ATP synthesis via oxidative phosphorylation, suggesting loss of this activity in mitosomes (28, 46). While it is likely that further mitosome-targeted proteins will be identified, it is clear that compared to mitochondria from fungal relatives, which are known to import ∼1,000 proteins (40, 44), microsporidian mitosomes represent organelles with highly reduced proteomes, a feature consistent with other traits of cellular reduction.The highly reduced state of the microsporidian mitosome, requiring only a fraction of the protein diversity of other mitochondria, presents an interesting case for studying organelle biogenesis—particularly the machinery for protein import of nucleus-encoded proteins. Mitochondrial protein import has been best characterized in fungi, and in these systems most proteins are imported via four major import complexes: a TOM (translocase of the outer mitochondrial membrane), a SAM (sorting and assembly machinery), and one of two TIMs (translocase of the inner mitochondrial membrane), TIM23 or TIM22 (see Fig. Fig.5A)5A) (5, 36). These complexes are broadly conserved throughout fungi as well as animals (15). Mitochondrial proteins can take one of several routes to the mitochondrion via this apparatus (5, 36). Broadly, soluble matrix proteins are recognized at the TOM complex by the receptor protein Tom20 through the binding of N-terminal presequences with characteristic features (1, 5, 7, 8, 36). These proteins are passed through the pore protein Tom40 of the TOM to the TIM23 complex and then driven into the mitochondrial matrix by way of the presequence translocase-associated motor (PAM) complex, where their presequences are subsequently removed. Some membrane proteins can also be released into the inner membrane from the TIM23 complex. Mitochondrial proteins that apparently lack such an extension, notably including many of the membrane proteins, are recognized by internal sequence elements. Tom70 has a greater role in recognizing these internal signals and thus the import of hydrophobic proteins (4, 11, 32, 39, 47). Such hydrophobic proteins are often bound by cytosolic molecular chaperones (Hsp70 and/or Hsp90) en route to the mitochondrion, and Tom70 is known to independently bind to both the chaperone and the substrate protein (7, 23, 33, 52). While a measure of substrate overlap between Tom20 and Tom70 occurs, the division of responsibility between these two receptors has likely evolved in response to the wide range of substrate proteins that must be imported into mitochondria and the need to handle this complexity.Open in a separate windowFIG. 5.Schematics of the protein import machinery and pathways in yeast mitochondria (A) and E. cuniculi mitosome (B) based on identified homologues of the general fungal/animal pathways. Protein components of the yeast system were all represented by HMMs used to search the microsporidian genomic data and represent the major presequence-dependent and presequence-independent pathways. Homologues identified in E. cuniculi indicate a severely reduced import apparatus utilizing elements of the presequence-independent pathway.For microsporidia little is known of the protein import apparatus for their relict mitochondrion, the mitosome. Has the very reduced organelle proteome, in concert with a genome-wide trend of the loss of redundant or superfluous genes, resulted in a smaller and/or derived import apparatus? In this study we have investigated the microsporidian mitosome protein import apparatus from E. cuniculi in order to evaluate how this apparatus has responded to the reduction in the number of proteins required to be imported and the overall radical reduction in the number and size of proteins encoded in the nuclear genome. A putative homologue of the outer membrane receptor protein Tom70 is of particular interest as the only receptor for the TOM complex and, given the known structure of Tom70 proteins, provides a highly informative example of how proteins can be shortened in the course of genome reduction.  相似文献   
30.
Primary ciliary dyskinesia (PCD) results from defects in motile cilia function. Mice homozygous for the mutation big giant head (bgh) have several abnormalities commonly associated with PCD, including hydrocephalus, male infertility, and sinusitis. In the present study, we use a variety of histopathological and cell biological techniques to characterize the bgh phenotype, and we identify the bgh mutation using a positional cloning approach. Histopathological, immunofluorescence, and electron microscopic analyses demonstrate that the male infertility results from shortened flagella and disorganized axonemal and accessory structures in elongating spermatids and mature sperm. In addition, there is a reduced number of elongating spermatids during spermatogenesis and mature sperm in the epididymis. Histological analyses show that the hydrocephalus is characterized by severe dilatation of the lateral ventricles and that bgh sinuses have an accumulation of mucus infiltrated by neutrophils. In contrast to the sperm phenotype, electron microscopy demonstrates that mutant respiratory epithelial cilia are ultrastructurally normal, but video microscopic analysis shows that their beat frequency is lower than that of wild-type cilia. Through a positional cloning approach, we identified two sequence variants in the gene encoding sperm flagellar protein 2 (SPEF2), which has been postulated to play an important role in spermatogenesis and flagellar assembly. A causative nonsense mutation was validated by Western blot analysis, strongly suggesting that the bgh phenotype results from the loss of SPEF2 function. Taken together, the data in this study demonstrate that SPEF2 is required for cilia function and identify a new genetic cause of PCD in mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号