首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   508篇
  免费   18篇
  2023年   6篇
  2022年   8篇
  2021年   18篇
  2020年   9篇
  2019年   15篇
  2018年   16篇
  2017年   15篇
  2016年   16篇
  2015年   31篇
  2014年   27篇
  2013年   44篇
  2012年   47篇
  2011年   43篇
  2010年   24篇
  2009年   30篇
  2008年   32篇
  2007年   33篇
  2006年   31篇
  2005年   19篇
  2004年   13篇
  2003年   7篇
  2002年   12篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   7篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1979年   1篇
排序方式: 共有526条查询结果,搜索用时 46 毫秒
191.
Mannosylerythritol lipids (MELs) are surface active compounds that belong to the glycolipid class of biosurfactants (BSs). MELs are produced by Pseudozyma sp. as a major component while Ustilago sp. produces them as a minor component. Although MELs have been known for over five decades, they recently regained attention due to their environmental compatibility, mild production conditions, structural diversity, self-assembling properties and versatile biochemical functions. In this review, the MEL producing microorganisms, the production conditions, their applications, their diverse structures and self-assembling properties are discussed. The biosynthetic pathways and the regulatory mechanisms involved in the production of MEL are also explained here.  相似文献   
192.
Synthetic peptides composed of multiples of the consensus heparin-binding Cardin and Weintraub sequences AKKARA and ARKKAAKA are antimicrobial. Replacement of lysine and arginine by histidine in these peptides completely abrogates their antimicrobial and heparin-binding activities at neutral pH. However, the antibacterial activity against Gram-negative (Escherichia coli, Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) as well as the fungus Candida albicans, was restored at acidic conditions (pH 5.5). Fluorescence microscopy and FACS analysis showed that the binding of the histidine-rich peptides to E. coli and Candida was significantly enhanced at pH 5.5. Likewise, fluorescence studies for assessment of membrane permeation as well as electron microscopy analysis of peptide-treated bacteria, paired with studies of peptide effects on liposomes, demonstrated that the peptides induce membrane lysis only at acidic pH. No discernible hemolysis was noted for the histidine-rich peptides. Similar pH-dependent antimicrobial activities were demonstrated for peptides derived from histidine-rich and heparin-binding regions of human kininogen and histidine-rich glycoprotein. The results demonstrate that the presence of an acidic environment is an important regulator of the activity of histidine-rich antimicrobial peptides.  相似文献   
193.
Brown bear‐mediated conflicts have caused immense economic loss to the local people living across the distribution range. In India, limited knowledge is available on the Himalayan brown bear (HBB), making human–brown bear conflict (HBC) mitigation more challenging. In this study, we studied HBC in the Lahaul valley using a semi‐structured questionnaire survey by interviewing 398 respondents from 37 villages. About 64.8% of respondents reported conflict in two major groups—crop damage (30.6%) and livestock depredations (6.2%), while 28% reported both. Conflict incidences were relatively high in summer and frequently occurred in areas closer to the forest (<500 m) and between the elevations range of 2700 m to 3000 m above sea level (asl). The dependency of locals on forest resources (70%) for their livelihood makes them vulnerable to HBC. The “upper lower” class respondents were most impacted among the various socioeconomic classes. Two of the four clusters were identified as HBC hot spots in Lahaul valley using SaTscan analysis. We also obtained high HBC in cluster II with a 14.35 km radius. We found that anthropogenic food provisioning for HBB, livestock grazing in bear habitats, and poor knowledge of animal behavior among the communities were the major causes of HBC. We suggest horticulture crop waste management, controlled and supervised grazing, ecotourism, the constitution of community watch groups, and others to mitigate HBC. We also recommend notifying a few HBB abundant sites in the valley as protected areas for the long‐term viability of the HBB in the landscape.  相似文献   
194.
195.
Ferric nitrilotriacetate (Fe-NTA) is a potent renal and hepatic tumor promoter, which acts through a mechanism involving oxidative stress. Fe-NTA when injected intraperitoneally into rats induces hepatic ornithine decarboxylase activity as well as hepatic DNA synthesis. Vitamin E is a well-known, lipid-soluble and chain-breaking antioxidant which protects cell membranes from peroxidative damage. In this study, we investigated the protective effect of vitamin E, a major fat-soluble antioxidant, against Fe-NTA-mediated hepatic oxidative stress, toxicity and hyperproliferation in Wistar rats. Animals were treated with two different doses of vitamin E for 1 week prior to Fe-NTA treatment. Vitamin E at a higher dose of 2.0 mg/animal/day showed significant reduction in Fe-NTA-induced hepatic ornithine decarboxylase activity, DNA synthesis, microsomal lipid peroxidation and hydrogen peroxide generation. Fe-NTA treatment alone caused depletion of glutathione, glutathione metabolizing and antioxidant enzymes in rat liver, whereas pretreatment of animals with vitamin E reversed these changes in a dose-dependent manner. Taken together, our results suggest that vitamin E may afford substantial protection against the damage caused by Fe-NTA exposure and can serve as a potent preventive agent to suppress oxidant-induced tissue injury.  相似文献   
196.
Kou R  SenBanerjee S  Jain MK  Michel T 《Biochemistry》2005,44(45):15064-15073
Vascular endothelial growth factor (VEGF) plays a central role in vascular homeostasis. VEGF receptors (VEGFRs) include several subtypes that may have a differential role in endothelial signal transduction, but interactions among these receptors are incompletely understood. In these studies, we designed small interfering RNA (siRNA) duplexes that targeted specific VEGFR subtypes in bovine aortic endothelial cells (BAEC). siRNA-mediated downregulation of VEGFR-2 by its cognate siRNA resulted in a significant attenuation of VEGF-mediated signaling. Compared to control siRNA-treated cells, VEGFR-2 siRNA markedly inhibited VEGF-mediated activation of PI3K/Akt/GSK3-beta as well as MAP kinase and PKC pathways. VEGFR-2 siRNA also blocked VEGF-stimulated phosphorylation and dephosphorylation of endothelial nitric oxide synthase (eNOS) at Ser(1179) and Ser(116), respectively. VEGFR-2-specific siRNA had no effect on the abundance of VEGFR-1 protein. By contrast, VEGFR-1-specific siRNA markedly not only downregulated the abundance of VEGFR-1 but also significantly reduced VEGFR-2 protein and mRNA abundance. VEGFR-1 siRNA had no effect on the stability of VEGFR-2 protein or mRNA. However, VEGFR-1 siRNA significantly inhibited VEGFR-2 promoter activity, as determined in luciferase assays using VEGFR-2 promoter fusion constructs in transfected BAEC. Deletion of either the 5' E box or the 3' E box and the GATA element in the VEGFR-2 promoter completely abolished the inhibition of VEGFR-2 promoter activity elicited by VEGFR-1 siRNA. Taken together, our data suggest that VEGFR-1 receptor is a critical determinant of VEGFR-2 abundance, while VEGFR-2 is the key receptor directly responsible for endothelial cell signaling stimulated by VEGF.  相似文献   
197.
198.
Activation of macrophages is important in chronic inflammatory disease states such as atherosclerosis. Proinflammatory cytokines such as interferon-gamma (IFN-gamma), lipopolysaccharide (LPS), or tumor necrosis factor-alpha can promote macrophage activation. Conversely, anti-inflammatory factors such as transforming growth factor-beta1 (TGF-beta1) can decrease proinflammatory activation. The molecular mediators regulating the balance of these opposing effectors remain incompletely understood. Herein, we identify Kruppel-like factor 4 (KLF4) as being markedly induced in response to IFN-gamma, LPS, or tumor necrosis factor-alpha and decreased by TGF-beta1 in macrophages. Overexpression of KLF4 in J774a macrophages induced the macrophage activation marker inducible nitric-oxide synthase and inhibited the TGF-beta1 and Smad3 target gene plasminogen activator inhibitor-1 (PAI-1). Conversely, KLF4 knockdown markedly attenuated the ability of IFN-gamma, LPS, or IFN-gamma plus LPS to induce the iNOS promoter, whereas it augmented macrophage responsiveness to TGF-beta1 and Smad3 signaling. The KLF4 induction of the iNOS promoter is mediated by two KLF DNA-binding sites at -95 and -212 bp, and mutation of these sites diminished induction by IFN-gamma and LPS. We further provide evidence that KLF4 interacts with the NF-kappaB family member p65 (RelA) to cooperatively induce the iNOS promoter. In contrast, KLF4 inhibited the TGF-beta1/Smad3 induction of the PAI-1 promoter independent of KLF4 DNA binding through a novel antagonistic competition with Smad3 for the C terminus of the coactivator p300/CBP. These findings support an important role for KLF4 as a regulator of key signaling pathways that control macrophage activation.  相似文献   
199.
Although lipid-dependent protein clustering in biomembranes mediates numerous functions, there is little consensus among membrane models on cluster organization or size. Here, we use influenza viral envelope protein hemagglutinin (HA(0)) to test the hypothesis that clustering results from proteins partitioning into preexisting, fluid-ordered "raft" domains, wherein they have a random distribution. Japan HA(0) expressed in fibroblasts was visualized by electron microscopy using immunogold labeling and probed by fluorescence resonance energy transfer (FRET). Labeled HA coincided with electron-dense, often noncircular membrane patches. Poisson and K-test (Ripley, B.D. 1977. J. R. Stat. Soc. Ser. B. 39:172-212) analyses reveal clustering on accessible length scales (20-900 nm). Membrane treatments with methyl-beta-cyclodextrin and glycosphingolipid synthesis inhibitors did not abolish clusters but did alter their pattern, especially at the shortest lengths, as was corroborated by changes in FRET efficiency. The magnitude and density dependence of the measured FRET efficiency also indicated a nonrandom distribution on molecular length scales (approximately 6-7 nm). This work rules out the tested hypothesis for HA over the accessible length scales, yet shows clearly how the spatial distribution of HA depends on lipid composition.  相似文献   
200.
Heat shock cognate 70 (HSC70) is an important evolutionary conserved protein that plays a major role in maintaining the homeostasis and immunity of many organisms. In this study, a HSC70 from Channa striatus was identified from its cDNA library and characterized using bioinformatics and molecular biology tools. CsHSC70 cDNA was 1953 base pair (bp) in length along with an open reading frame which encoded a polypeptide of 650 amino acid residues. Tissue distribution results showed that CsHSC70 was considerably expressed in gill, to a lesser extent in head kidney, blood, spleen and liver and at low level in other tissues. Using C. striatus gill as cell model, effects of fungal, bacterial and poly I:C stimulant on the mRNA levels of CsHSC70 was examined. We also described the antimicrobial features of two peptides namely CsHSC70 A1and CsHSC70 A2 derived from the N-terminal of CsHSC70 protein. CsHSC70 A1 peptide (40 µg/ml) exhibited potent bactericidal activity against Micrococcus luteus cells. Flow cytometric analysis revealed that the M. luteus cells stained with propidium iodide, upon treated with CsHSC70 A1 at the concentration of 40 µM/ml showed 38% survival compared to its control (99.6%). It seems that CsHSC70 A1 peptide shows antimicrobial activity against M. luteus through membrane disruption. Additionally, scanning electron microscope (SEM) observation confirmed that CsHSC70 A1 peptide treatment completely damaged and destructed the M. luteus cells. Taken together, these findings suggest that CsHSC70 A1 peptide could be a safe and potential therapeutic molecule substitute to antibiotics in various clinical fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号