首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   583篇
  免费   92篇
  2021年   7篇
  2018年   6篇
  2016年   15篇
  2015年   15篇
  2014年   21篇
  2013年   21篇
  2012年   24篇
  2011年   26篇
  2010年   9篇
  2009年   17篇
  2008年   21篇
  2007年   19篇
  2006年   13篇
  2005年   18篇
  2004年   16篇
  2003年   10篇
  2002年   21篇
  2001年   22篇
  2000年   10篇
  1999年   7篇
  1997年   5篇
  1995年   9篇
  1994年   5篇
  1993年   9篇
  1992年   12篇
  1991年   7篇
  1990年   8篇
  1989年   10篇
  1988年   11篇
  1987年   8篇
  1986年   9篇
  1985年   9篇
  1984年   7篇
  1983年   13篇
  1982年   5篇
  1981年   5篇
  1980年   6篇
  1979年   11篇
  1978年   6篇
  1977年   7篇
  1976年   6篇
  1975年   13篇
  1974年   12篇
  1973年   8篇
  1972年   14篇
  1971年   9篇
  1970年   5篇
  1969年   13篇
  1967年   7篇
  1965年   5篇
排序方式: 共有675条查询结果,搜索用时 46 毫秒
61.
62.
63.
Mode of Action of Growth Retarding Chemicals   总被引:9,自引:9,他引:0       下载免费PDF全文
  相似文献   
64.
S100B protein in brain is produced primarily by astrocytes, has been used as a marker for brain injury and has also been shown to be neurotrophic and neuroprotective. Using a well characterized in vitro model of brain cell trauma, we examined the potential role of exogenous S100B in preventing delayed neuronal injury. Neuronal plus glial cultures were grown on a deformable Silastic membrane and then subjected to strain (stretch) injury produced by a 50 ms displacement of the membrane. We have previously shown that this injury causes an immediate, but transient, nuclear uptake of the fluorescent dye propidium iodide by astrocytes and a 24-48 h delayed uptake by neurons. Strain injury caused immediate release of S100-beta with further release by 24 and 48 h. Adding 10 or 100 nm S100B to injured cultures at 15 s, 6 h or 24 h after injury reduced delayed neuronal injury measured at 48 h. Exogenous S100B was present in the cultures through 48 h. These studies directly demonstrate the release and neuroprotective role of S100B after traumatic injury and that, unlike most receptor antagonists used for the treatment of trauma, S100B is neuroprotective when given at later, more therapeutically relevant time points.  相似文献   
65.
66.
67.
In smooth muscle, Ca(2+) controls diverse activities including cell division, contraction and cell death. Of particular significance in enabling Ca(2+) to perform these multiple functions is the cell's ability to localize Ca(2+) signals to certain regions by creating high local concentrations of Ca(2+) (microdomains), which differ from the cytoplasmic average. Microdomains arise from Ca(2+) influx across the plasma membrane or release from the sarcoplasmic reticulum (SR) Ca(2+) store. A single Ca(2+) channel can create a microdomain of several micromolar near (approximately 200 nm) the channel. This concentration declines quickly with peak rates of several thousand micromolar per second when influx ends. The high [Ca(2+)] and the rapid rates of decline target Ca(2+) signals to effectors in the microdomain with rapid kinetics and enable the selective activation of cellular processes. Several elements within the cell combine to enable microdomains to develop. These include the brief open time of ion channels, localization of Ca(2+) by buffering, the clustering of ion channels to certain regions of the cell and the presence of membrane barriers, which restrict the free diffusion of Ca(2+). In this review, the generation of microdomains arising from Ca(2+) influx across the plasma membrane and the release of the ion from the SR Ca(2+) store will be discussed and the contribution of mitochondria and the Golgi apparatus as well as endogenous modulators (e.g. cADPR and channel binding proteins) will be considered.  相似文献   
68.
Ca microdomains in smooth muscle   总被引:1,自引:0,他引:1  
In smooth muscle, Ca2+ controls diverse activities including cell division, contraction and cell death. Of particular significance in enabling Ca2+ to perform these multiple functions is the cell's ability to localize Ca2+ signals to certain regions by creating high local concentrations of Ca2+ (microdomains), which differ from the cytoplasmic average. Microdomains arise from Ca2+ influx across the plasma membrane or release from the sarcoplasmic reticulum (SR) Ca2+ store. A single Ca2+ channel can create a microdomain of several micromolar near (200 nm) the channel. This concentration declines quickly with peak rates of several thousand micromolar per second when influx ends. The high [Ca2+] and the rapid rates of decline target Ca2+ signals to effectors in the microdomain with rapid kinetics and enable the selective activation of cellular processes. Several elements within the cell combine to enable microdomains to develop. These include the brief open time of ion channels, localization of Ca2+ by buffering, the clustering of ion channels to certain regions of the cell and the presence of membrane barriers, which restrict the free diffusion of Ca2+. In this review, the generation of microdomains arising from Ca2+ influx across the plasma membrane and the release of the ion from the SR Ca2+ store will be discussed and the contribution of mitochondria and the Golgi apparatus as well as endogenous modulators (e.g. cADPR and channel binding proteins) will be considered.  相似文献   
69.
70.

Introduction

We aimed to describe the distribution of radiographic chondrocalcinosis (CC) and to examine whether metacarpophalangeal joint (MCPJ) calcification and CC at other joints occurs in the absence of knee involvement.

Methods

This was a cross-sectional study embedded in the Genetics of Osteoarthritis and Lifestyle study (GOAL). All participants (n = 3,170) had radiographs of the knees, hands, and pelvis. These were scored for radiographic changes of osteoarthritis (OA), for CC at knees, hips, symphysis pubis, and wrists, and for MCPJ calcification. The prevalence of MCPJ calcification and CC overall, at each joint, and in the presence or absence of knee involvement, was calculated.

Results

The knee was the commonest site of CC, followed by wrists, hips, and symphysis pubis. CC was more likely to be bilateral at knees and wrists but unilateral at hips. MCPJ calcification was usually bilateral, and less common than CC at knees, hips, wrists, and symphysis pubis. Unlike that previously reported, CC commonly occurred without any knee involvement; 44.4% of wrist CC, 45.9% of hip CC, 45.5% of symphysis pubis CC, and 31.3% of MCPJ calcification occurred in patients without knee CC. Those with meniscal or hyaline articular cartilage CC had comparable ages (P = 0.21), and neither preferentially associated with fibrocartilage CC at distant joints.

Conclusions

CC visualized on a plain radiograph commonly occurs at other joints in the absence of radiographic knee CC. Therefore, knee radiographs alone are an insufficient screening test for CC. This has significant implications for clinical practice, for epidemiologic and genetic studies of CC, and for the definition of OA patients with coexistent crystal deposition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号