首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   18篇
  国内免费   3篇
  2024年   1篇
  2023年   6篇
  2022年   11篇
  2021年   14篇
  2020年   7篇
  2019年   15篇
  2018年   14篇
  2017年   13篇
  2016年   9篇
  2015年   12篇
  2014年   11篇
  2013年   22篇
  2012年   16篇
  2011年   19篇
  2010年   8篇
  2009年   8篇
  2008年   8篇
  2007年   8篇
  2006年   8篇
  2005年   5篇
  2004年   11篇
  2003年   8篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1987年   1篇
  1984年   1篇
  1983年   2篇
  1978年   2篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
  1966年   2篇
排序方式: 共有255条查询结果,搜索用时 15 毫秒
41.
The protein glycation inhibitory activity of ethanolic extract of Lawsonia inermis (henna) plant tissues was evaluated in vitro using the model system of bovine serum albumin and glucose. Protein oxidation and glycation are posttranslational modifications that are implicated in the pathological development of many age-related disease processes. This study investigated the effects of Lawsonia inermis ethanolic extract and its components, on protein damage induced by a free radical generator in in vitro assay system. We found that alcoholic extract of Lawsonia inermis can effectively protect against protein damage and showed that its action is mainly due to Lawsone. In addition, the presence of gallic acid also plays an important role in the protective activity against protein oxidation and glycation. Two known compounds, namely, Lawsone and gallic acid previously isolated from this plant were subjected to glycation bioassay for the first time. It was found that the alcoholic extract, lawsone (1) and gallic acid (2) showed significant inhibition of Advanced Glycated End Products (AGEs) formation and exhibit 77.95%, 79.10% and 66.98% inhibition at a concentration of 1500 microg/mL, 1000 microg/mL and 1000 microM respectively. Lawsonia inermis, compounds 1 and 2 were found to be glycation inhibitors with IC(50) 82.06 +/- 0.13 microg/mL, 67.42 +/- 1.46 microM and 401.7 +/- 6. 23 microM respectively. This is the first report on the glycation activity of these compounds and alcoholic extract of Lawsonia inermis.  相似文献   
42.
Although the phenomenon of opioid tolerance has been widely investigated, neither opioid nor nonopioid mechanisms are completely understood. The aim of the present study was to investigate the role of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway in the development of morphine-induced analgesia tolerance. The study was carried out on male Wistar albino rats (weighing 180-210 g; n = 126). To develop morphine tolerance, animals were given morphine (50 mg/kg; s.c.) once daily for 3 days. After the last dose of morphine was injected on day 4, morphine tolerance was evaluated. The analgesic effects of 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), BAY 41-2272, S-nitroso-N-acetylpenicillamine (SNAP), N(G)-nitro-L-arginine methyl ester (L-NAME), and morphine were considered at 15 or 30 min intervals (0, 15, 30, 60, 90, and 120 min) by tail-flick and hot-plate analgesia tests (n = 6 in each study group). The results showed that YC-1 and BAY 41-2272, a NO-independent activator of soluble guanylate cyclase (sGC), significantly increased the development and expression of morphine tolerance, and L-NAME, a NO synthase (NOS) inhibitor, significantly decreased the development of morphine tolerance. In conclusion, these data demonstrate that the nitric oxide-cGMP signal pathway plays a pivotal role in developing tolerance to the analgesic effect of morphine.  相似文献   
43.
Establishing genotype-phenotype relationship is the key to understand the molecular mechanism of phenotypic adaptation. This initial step may be untangled by analyzing appropriate ancestral molecules, but it is a daunting task to recapitulate the evolution of non-additive (epistatic) interactions of amino acids and function of a protein separately. To adapt to the ultraviolet (UV)-free retinal environment, the short wavelength-sensitive (SWS1) visual pigment in human (human S1) switched from detecting UV to absorbing blue light during the last 90 million years. Mutagenesis experiments of the UV-sensitive pigment in the Boreoeutherian ancestor show that the blue-sensitivity was achieved by seven mutations. The experimental and quantum chemical analyses show that 4,008 of all 5,040 possible evolutionary trajectories are terminated prematurely by containing a dehydrated nonfunctional pigment. Phylogenetic analysis further suggests that human ancestors achieved the blue-sensitivity gradually and almost exclusively by epistasis. When the final stage of spectral tuning of human S1 was underway 45–30 million years ago, the middle and long wavelength-sensitive (MWS/LWS) pigments appeared and so-called trichromatic color vision was established by interprotein epistasis. The adaptive evolution of human S1 differs dramatically from orthologous pigments with a major mutational effect used in achieving blue-sensitivity in a fish and several mammalian species and in regaining UV vision in birds. These observations imply that the mechanisms of epistatic interactions must be understood by studying various orthologues in different species that have adapted to various ecological and physiological environments.  相似文献   
44.
45.
Epithelial ovarian cancer is a highly heterogeneous disease and remains the most lethal gynaecological malignancy in the Western world. Therapeutic approaches need to account for inter-patient and intra-tumoural heterogeneity and detailed characterization of in vitro models representing the different histological and molecular ovarian cancer subtypes is critical to enable reliable preclinical testing. There are approximately 100 publicly available ovarian cancer cell lines but their cellular and molecular characteristics are largely undescribed. We have characterized 39 ovarian cancer cell lines under uniform conditions for growth characteristics, mRNA/microRNA expression, exon sequencing, drug response for clinically-relevant therapeutics and collated all available information on the original clinical features and site of origin. We tested for statistical associations between the cellular and molecular features of the lines and clinical features. Of the 39 ovarian cancer cell lines, 14 were assigned as high-grade serous, four serous-type, one low-grade serous and 20 non-serous type. Three morphological subtypes: Epithelial (n = 21), Round (n = 7) and Spindle (n = 12) were identified that showed distinct biological and molecular characteristics, including overexpression of cell movement and migration-associated genes in the Spindle subtype. Comparison with the original clinical data showed association of the spindle-like tumours with metastasis, advanced stage, suboptimal debulking and poor prognosis. In addition, the expression profiles of Spindle, Round and Epithelial morphologies clustered with the previously described C1-stromal, C5-mesenchymal and C4 ovarian subtype expression profiles respectively. Comprehensive profiling of 39 ovarian cancer cell lines under controlled, uniform conditions demonstrates clinically relevant cellular and genomic characteristics. This data provides a rational basis for selecting models to develop specific treatment approaches for histological and molecular subtypes of ovarian cancer.  相似文献   
46.
47.
The present study was set to identify the members of An. maculipennis complex, which includes effective malaria vectors, throughout the Mediterranean region of Turkey using the second internal transcribed spacer of ribosomal DNA (rDNA-ITS2) sequences from 200 specimens. Resulting sequences of this complex from the Mediterranean region revealed the presence of three species belonging to the An. maculipennis complex, namely An. sacharovi, An. maculipennis s.s. and An. melanoon. The lengths of ITS2 region were 284, 294 and 306 bp in length for An. maculipennis s.s., An. melanoon and An. sacharovi respectively. While no sequence divergence was observed within any species, An. sacharovi was the most distantly related species from An. maculipennis s.s. and An. melanoon with a sequence divergence of 15.1% and 15.4%, respectively. While An. melanoon was the rare species, An. maculipennis s.s., was the most abundant and An. sacharovi was the most wide spread one.  相似文献   
48.
A proteomic study was conducted to investigate physiological factors affecting feeding behaviour by larvae of the insect, Plutella xylostella, on herbivore-susceptible and herbivore-resistant Arabidopsis thaliana. The leaves of 162 recombinant inbred lines (Rils) were screened to detect genotypes upon which Plutella larvae fed least (P. xylostella-resistant) or most (P. xylostella-susceptible). 2D-PAGE revealed significant differences in the proteomes between the identified resistant and susceptible Rils. The proteomic results, together with detection of increased production of hydrogen peroxide in resistant Rils, suggest a correlation between P. xylostella resistance and the production of increased levels of reactive oxygen species (ROS), in particular H2O2, and that this was expressed prior to herbivory. Many of the proteins that were more abundant in the Plutella-resistant Rils are known in other biological systems to be involved in limiting ROS damage. Such proteins included carbonic anhydrases, malate dehydrogenases, glutathione S-transferases, isocitrate dehydrogenase-like protein (R1), and lipoamide dehydrogenase. In addition, patterns of germin-like protein 3 isoforms could also be indicative of higher levels of reactive oxygen species in the resistant Rils. Consistent with the occurrence of greater oxidative stress in the resistant Rils is the observation of greater abundance in susceptible Rils of polypeptides of the photosynthetic oxygen-evolving complex, which are known to be damaged under oxidative stress. The combined results suggest that enhanced production of ROS may be a major pre-existing mechanism of Plutella resistance in Arabidopsis, but definitive corroboration of this requires much further work.  相似文献   
49.
50.
Cerebral ischemia (CI), caused by the deprivation of oxygen and glucose to the brain, is the leading cause of permanent disability. Neuronal demise in CI has been linked to several pathways which include cyclooxygenases (COX) − mediated production of prostaglandins (PGs) and subsequently reactive oxygen species (ROS), aquaporin-4 (AQ-4) − mediated brain edema and acidsensing ion channel-1a (ASIC-1a) − mediated acidotoxicity, matrix remodeling, in addition to others. Several non-steroidal antiinflammatory drugs (NSAIDs) are presently in use to prevent these pathways. However, owing to the large number of processes involved, there is high drug load. So, identifying drugs with multimodal role has always been a frequently sought venture. The present in silico study has been performed to find out the relative efficacy of three different NSAIDs (Piroxicam, Aspirin and Nimesulide) in preventing neurodegeneration in CI, with respect to their inhibitory potential on COXs, AQ-4 and ASIC-1a. We find that piroxicam is the most potent inhibitor of these receptors as compared to the NSAIDs under investigation. Since piroxicam has already been reported to inhibit N-methyl-D-aspartate (NMDA) receptor and matrix metalloproteinases (MMPs), which are also linked to CI-induced neurodegeneration, we hereby propose piroxicam to be a gold-standard drug in preventing neurodegeneration in CI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号