首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4053篇
  免费   191篇
  国内免费   28篇
  2024年   10篇
  2023年   80篇
  2022年   189篇
  2021年   330篇
  2020年   161篇
  2019年   190篇
  2018年   257篇
  2017年   164篇
  2016年   232篇
  2015年   289篇
  2014年   311篇
  2013年   315篇
  2012年   321篇
  2011年   266篇
  2010年   176篇
  2009年   158篇
  2008年   161篇
  2007年   137篇
  2006年   104篇
  2005年   95篇
  2004年   65篇
  2003年   51篇
  2002年   38篇
  2001年   11篇
  2000年   9篇
  1999年   13篇
  1998年   12篇
  1997年   8篇
  1996年   13篇
  1995年   8篇
  1994年   8篇
  1993年   10篇
  1992年   10篇
  1991年   7篇
  1989年   5篇
  1988年   4篇
  1987年   6篇
  1986年   5篇
  1985年   5篇
  1984年   2篇
  1983年   4篇
  1982年   5篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1976年   3篇
  1975年   2篇
  1974年   3篇
  1968年   3篇
排序方式: 共有4272条查询结果,搜索用时 31 毫秒
991.
A series of 2-(hydrazinocarbonyl)-3-aryl-1H-indole-5-sulfonamides possessing various 2-, 3- or 4- substituted phenyl groups with methyl-, halogeno- and methoxy-functionalities, or a perfluorophenyl moiety, has been derivatized by reaction with 2,4,6-trimethylpyrylium perchlorate. The new sulfonamides were evaluated as inhibitors of four mammalian carbonic anhydrase (CA, EC 4.2.1.1) isoforms, that is, CA I, II (cytosolic), CA IX and XII (transmembrane, tumor-associated forms). Excellent inhibitory activity was observed against hCA IX with most of these sulfonamides, and against hCA XII with some of the new compounds. These compounds were generally less effective inhibitors of hCA II. Being membrane impermeant, these positively-charged sulfonamides are interesting candidates for targeting the tumor-associated CA IX and XII, as possible diagnostic tools or therapeutic agents.  相似文献   
992.
A series of aromatic/heterocyclic sulfonamides incorporating phenyl(alkyl), halogenosubstituted-phenyl- or 1,3,4-thiadiazole-sulfonamide moieties and thienylacetamido; phenacetamido- and pyridinylacetamido tails were prepared and assayed as inhibitors of cytosolic human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms hCA I, II and VII. The new compounds showed moderate inhibition of the two ubiquitous isoforms I and II (KIs of 50–390 nM) and excellent inhibitory activity against the brain associated hCA VII (KIs in the range of 4.7–8.5 nM). Isoform VII highly selective inhibitors are being detected for the first time, with selectivity ratios for inhibiting CA VII over CA II of 11–75, and for inhibiting CA VII over CA I of 10–49, which may be useful for understanding the role of CA VII in epileptogenesis and other physiologic processes.  相似文献   
993.
Little is known about the complex interplay between the extracellular mechanical environment and the mechanical properties that characterize the dynamic intracellular environment. To elucidate this relationship in cancer, we probe the intracellular environment using particle-tracking microrheology. In three-dimensional (3D) matrices, intracellular effective creep compliance of prostate cancer cells is shown to increase with increasing extracellular matrix (ECM) stiffness, whereas modulating ECM stiffness does not significantly affect the intracellular mechanical state when cells are attached to two-dimensional (2D) matrices. Switching from 2D to 3D matrices induces an order-of-magnitude shift in intracellular effective creep compliance and apparent elastic modulus. However, for a given matrix stiffness, partial blocking of β1 integrins mitigates the shift in intracellular mechanical state that is invoked by switching from a 2D to 3D matrix architecture. This finding suggests that the increased cell-matrix engagement inherent to a 3D matrix architecture may contribute to differences observed in viscoelastic properties between cells attached to 2D matrices and cells embedded within 3D matrices. In total, our observations show that ECM stiffness and architecture can strongly influence the intracellular mechanical state of cancer cells.  相似文献   
994.
A rapid, simple in vitro test system for high-throughput screening of peroxisome proliferator-activated receptor (PPAR) γ agonists would be of interest for testing new antidiabetic drugs, alternative medicine, or environmental samples. A yeast two-hybrid assay based on the ligand-dependent recruitment of the coactivator CBP (CREB-binding protein) was constructed. In this system PPARγ was constitutively activated and the signal was not further increased significantly by adding agonists. In yeast we identified oleic acid as a putative endogenous ligand. Furthermore yeasts seem to lack regulatory mechanisms present in mammalian cells. Mammalian systems are an alternative for screening PPARγ agonists.  相似文献   
995.
An amperometric lactate biosensor was developed based on a conducting polymer, poly-5,2′-5′,2′′-terthiophene-3′-carboxylic acid (pTTCA), and multiwall carbon nanotube (MWNT) composite on a gold electrode. Lactate dehydrogenase (LDH) and the oxidized form of nicotinamide adenine dinucleotide (NAD+) were subsequently immobilized onto the pTTCA/MWNT composite film. The modified electrode was characterized by quartz crystal microbalance (QCM), scanning electron microscopy (SEM), and electrochemical experiments. The detection signal was amplified by the pTTCA/MWNT assembly onto which a sufficient amount of enzyme was immobilized and stabilized by the covalent bond formation between the amine groups of enzyme and the carboxylic acid groups of the pTTCA/MWNT film. Experimental parameters affecting the sensor responses, such as applied potential, pH, and temperature, were assessed and optimized. Analytical performances and dynamic ranges of the sensor were determined, and the results showed that the sensitivity, stability, and reproducibility of the sensor improved significantly using pTTCA/MWNT composite film. The calibration plot was linear (r2 = 0.9995) over the range of 5 to 90 μM. The sensitivity was approximately 0.0106 μA/μM, with a detection limit of 1 μM, based on a signal/noise ratio of 3. The applicability of the sensor for the analysis of l-lactate concentration in commercial milk and human serum samples was demonstrated successfully.  相似文献   
996.
Evolution of geminiviruses and their satellites   总被引:1,自引:0,他引:1  
Geminiviruses and their satellites have circular single stranded DNA genomes, infecting many crops and weeds across the globe. To successfully invade new hosts, break host resistance, move virus particles within and between plants, geminiviruses and their satellites have evolved a coordinated network of protein interactions, showing a possible evolutionary path. Humans have played an important role in the last century to promote the emergence of many geminivirus diseases, thereby impacting their evolution. The greatest molecular diversity of geminiviruses and their satellites resides in Southeast Asia revealing a possible center of origin. This minireview leads us to a possible general grand scheme of their evolution.  相似文献   
997.
Plant growth-promoting rhizobacteria with gibberellins (GA)-producing potential were isolated from soil and screened for plant growth promotion. A new strain, Acinetobacter calcoaceticus SE370, produced extracellular GA and also had phosphate solubilising potential. It produced 10 different gibberellins, including the bioactive GA1, GA3 and GA4 which were at, respectively, 0.45, 6.2 and 2.8 ng/100 ml. The isolate solubilised tricalcium phosphate and lowered pH of the medium during the process. Culture filtrates of the organism after growth on broth promoted growth of cucumber, Chinese cabbage and crown daisy. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
998.
Plant growth-promoting endophytic fungi with gibberellin-producing ability were isolated from the roots of Carex kobomugi Ohwi, a common sand-dune plant, and bioassayed for plant growth-promotion. A new strain, Arthrinium phaeospermum KACC43901, promoted growth of waito-c rice and Atriplex gemelinii. Analysis of its culture filtrate showed the presence of bioactive GA1 (0.5 ng/ml), GA3 (8.8 ng/ml), GA4 (4.7 ng/ml) and GA7 (2.2 ng/ml) along with physiologically inactive GA5 (0.4 ng/ml), GA9 (0.6 ng/ml), GA12 (0.4 ng/ml), GA15 (0.4 ng/ml), GA19 (0.9 ng/ml) and GA24 (1.8 ng/ml). The fungal isolate was identified through sequence homology and phylogenetic analysis of 18S rDNA (internal transcribed region). Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
999.
The microbial biotransformation of Δ9-tetrahydrocannabinol was investigated using a collection of 206 alkane-degrading strains. Fifteen percent of these strains, mainly gram-positive strains from the genera Rhodococcus, Mycobacterium, Gordonia, and Dietzia, yielded more-polar derivatives. Eight derivatives were produced on a mg scale, isolated, and purified, and their chemical structures were elucidated with the use of liquid chromatography-mass spectrometry, 1H-nuclear magnetic resonance (1H-NMR), and two-dimensional NMR (1H-1H correlation spectroscopy and heteronuclear multiple bond coherence). All eight biotransformation products possessed modified alkyl chains, with hydroxy, carboxy, and ester functionalities. In a number of strains, β-oxidation of the initially formed C5 carboxylic acid led to the formation of a carboxylic acid lacking two methylene groups.Δ9-Tetrahydrocannabinol (Δ9-THC) is the decarboxylated product of the corresponding Δ9-THC acid, the major cannabinoid present in the cannabis plant (Cannabis sativa L., Cannabaceae). This compound is officially registered as a drug for the stimulation of appetite and antiemesis in patients under chemotherapy and human immunodeficiency virus therapy regimens. Other biological activities ascribed to this compound include lowering intraocular pressure in glaucoma, acting as an analgesic for muscle relaxation, immunosuppression, sedation, bronchodilation, and neuroprotection (11).Δ9-THC and many of its derivatives are highly lipophilic and poorly water soluble. Calculations of the n-octanol/water partition coefficient (Ko/w) of Δ9-THC at neutral pH vary between 6,000, using the shake flask method (15), and 9.44 × 106, by reverse-phase high-performance liquid chromatography estimation (19). The poor water solubility and high lipophilicity of cannabinoids cause their absorption across the lipid bilayer membranes and fast elimination from blood circulation. In terms of the “Lipinsky rule of 5” (14), the high lipophilicity of cannabinoids hinders the further development of these compounds into large-scale pharmaceutical products.To generate more water-soluble analogues, one can either apply de novo chemical synthesis (as, e.g., in reference 16) or modify naturally occurring cannabinoids, e.g., by introducing hydroxy, carbonyl, or carboxy groups. Chemical hydroxylation of compounds such as cannabinoids is difficult (Δ9-THC is easily converted into Δ8-THC under mild conditions), and therefore microbial biotransformation of cannabinoids is potentially a more fruitful option to achieve this goal.So far, studies on biotransformation of Δ9-THC were mainly focused on fungi, which led to the formation of a number of mono- and dihydroxylated derivatives. Previous reports on the biotransformation of cannabinoids by various microorganisms are summarized in Table Table1.1. The aim of the present study was to test whether bacterial strains are capable of transforming Δ9-THC into new products (with potentially better pharmaceutical characteristics) at a higher yield and specificity than previously found for fungal strains. For this purpose, we have chosen to use a collection of alkane-degrading strains, since it was shown in previous studies (8, 18, 20) that alkane oxygenases often display a broad substrate range. Production of novel cannabinoid derivatives that might have interesting pharmacological activities was another objective of this project.

TABLE 1.

Previous biotransformation experiments conducted using various microorganisms to transform cannabinoids
Cannabinoid(s)aMicroorganism(s) usedNo. of transformed productsReference
Δ9-THCCunninghamella blakesleeana63
Δ8-THCPellicularia filamentosa421
Δ8-THCStreptomyces lavendulae421
Δ6a,10a-THC400 cultures (soil microorganisms)Various1
Nabilone400 cultures (soil microorganisms)Various1
Δ6a,10a-THC358 cultures containing bacteria, actinomycetes, and molds310
Δ9-THC, Δ8-THC, CBD, CBNSyncephalastrum racemosum, Mycobacterium rhodochrousVarious17
Δ9-THCChaetomium globosum37
Δ9-THC51 fungal strains84
NabiloneMicrobesVarious2
Δ9-THCFusarium nivale, Gibberella fujikuroi, and Thamnidium elegans85
Open in a separate windowaCBD, cannabidiol; CBN, cannabinol.  相似文献   
1000.
Green fluorescent protein (GFP) is an unusually stable fluorescent protein that belongs to a family of related auto-fluorescent proteins (AFPs). These AFPs have been generated from jellyfish GFP by mutating the amino acids in the chromophore or its vicinity. Variants that emit light in the blue region (Blue Fluorescent Protein, BFP), red region, or yellow region are readily available and are widely used in diverse applications. Previously, we had used fluorescence spectroscopy to study the effect of pH on the denaturation of GFP with SDS, urea, and heat. Surprisingly, we found that SDS, urea or heat, did not have any significant effect on the fluorescence of GFP at pH 7.5 or 8.5, however, at pH 6.5, the protein lost all fluorescence within a very short period of time. These results suggested that GFP undergoes a structural/stability shift between pH 6.5 and 7.5, with the GFP structure at pH 6.5 being very sensitive to denaturation by SDS, urea, and heat. In the present study, we wanted to explore whether the stability or structure of the closely related BFP is also pH dependent. As expected, we found heat-induced denaturation and renaturation of BFP to be pH dependent, very much like GFP. However, when exposed to other denaturants like urea/heat or SDS we found BFP to behave very differently than GFP. Unlike GFP, which at pH 8.5 and 7.5 is very resistant to SDS-induced denaturation, BFP readily lost about 20% of its fluorescence at pH 8.5 and about 60% fluorescence at pH 7.5. Also, our denaturation and renaturation studies show that under certain conditions, BFP is more stable than GFP, such that under conditions where GFP is completely denatured, BFP still retained significant fluorescence. Taken together, our preliminary results show that despite being very similar in both amino acid sequences and overall structures, there may be subtle and important structural/conformational differences between BFP and GFP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号