To elucidate the anti-inflammatory and anabolic effects of regulated expression of IL-4 in chondrocyte-scaffolds under in vitro inflammatory conditions.
Methods
Mature articular chondrocytes from dogs (n = 3) were conditioned through transient transfection using pcDNA3.1.cIL-4 (constitutive) or pCOX-2.cIL-4 (cytokine-responsive) plasmids. Conditioned cells were seeded in alginate microspheres and rat-tail collagen type I matrix (CaReS®) to generate two types of tissue-engineered 3-dimensional scaffolds. Inflammatory arthritis was simulated in the packed chondrocytes through exogenous addition of recombinant canine (rc) IL-1β (100 ng/ml) plus rcTNFα (50 ng/ml) in culture media for 96 hours. Harvested cells and culture media were analyzed by various assays to monitor the anti-inflammatory and regenerative (anabolic) properties of cIL-4.
Results
cIL-4 was expressed from COX-2 promoter exclusively on the addition of rcIL-1β and rcTNFα while its expression from CMV promoter was constitutive. The expressed cIL-4 downregulated the mRNA expression of IL-1β, TNFα, IL-6, iNOS and COX-2 in the cells and inhibited the production of NO and PGE2 in culture media. At the same time, it up-regulated the expression of IGF-1, IL-1ra, COL2a1 and aggrecan in conditioned chondrocytes in both scaffolds along with a diminished release of total collagen and sGAG into the culture media. An increased amount of cIL-4 protein was detected both in chondrocyte cell lysate and in concentrated culture media. Neutralizing anti-cIL-4 antibody assay confirmed that the anti-inflammatory and regenerative effects seen are exclusively driven by cIL-4. There was a restricted expression of IL-4 under COX-2 promoter possibly due to negative feedback loop while it was over-expressed under CMV promoter (undesirable). Furthermore, the anti-inflammatory /anabolic outcomes from both scaffolds were reproducible and the therapeutic effects of cIL-4 were both scaffold- and promoter-independent.
Conclusions
Regulated expression of therapeutic candidate gene(s) coupled with suitable scaffold(s) could potentially serve as a useful tissue-engineering tool to devise future treatment strategies for osteoarthritis. 相似文献
The human immunodeficiency virus type I (HIV-1) accessory protein Vpr has been associated with the induction of programmed cell death (apoptosis) and cell-cycle arrest. Studies have shown the apoptotic effect of Vpr on primary and established cell lines and on diverse tissues including the central nervous system (CNS) in vitro. However, the relevance of the effect of Vpr observed in vitro to HIV-1 neuropathogenesis in vivo, remains unknown. Due to the narrow host range of HIV-1 infection, no animal model is currently available. This has prompted us to consider a small animal model to evaluate the effects of Vpr on CNS in vivo through surrogate viruses expressing HIV-1Vpr. A single round of replication competent viral vectors, expressing Vpr, were used to investigate the apoptosis-inducing capabilities of HIV-1Vpr in vivo. Viral particles pseudotyped with VSV-G or N2c envelopes were generated from spleen necrosis virus (SNV) and HIV-1-based vectors to transduce CNS cells. The in vitro studies have demonstrated that Vpr generated by SNV vectors had less apoptotic effects on CNS cells compared with Vpr expressed by HIV-1 vectors. The in vivo study has suggested that viral particles, expressing Vpr generated by HIV-1-based vectors, when delivered through the ventricle, caused loss of neurons and dendritic processes in the cortical region. The apoptotic effect was extended beyond the cortical region and affected the hippocampus neurons, the lining of the choroids plexus, and the cerebellum. However, the effect of Vpr, when delivered through the cortex, showed neuronal damage only around the site of injection. Interestingly, the number of apoptotic neurons were significantly higher with HIV-1 vectors expressing Vpr than by the SNV vectors. This may be due to the differences in the proteins expressed by these viral vectors. These results suggest that Vpr induces apoptosis in CNS cells in vitro and in vivo. To our knowledge, this is the first study to investigate the apoptosis-inducing capabilities of HIV-1Vpr in vivo in neonatal mice. We propose that this, in expensive animal model, may be of value to design-targeted neuroprotective therapeutics. 相似文献
A field trial was carried out to appraise up to what extent exogenous application of a potential osmoprotectant, glycinebetaine (GB), could ameliorate the inhibitory effects of shortage of water on maize seed and seed oil composition and oil antioxidant potential. Two maize cultivars, Agaiti-2002 (drought tolerant) and EV-1098 (drought sensitive), were exposed to drought treatments at the vegetative growth stage. Both the maize cultivars used in the present study are being widely cultivated in Pakistan and have been an important source of developing different maize hybrids. Two levels of glycinebetaine (0 or 30 mM) were foliar-applied at the vegetative stage. Water stress reduced the kernel sugar, oil, protein, moisture contents and most of the seed micro- and macro-nutrients analyzed of both maize cultivars, but it increased the contents of seed fiber and ash contents. Among different seed oil un-saturated fatty acids, water stress increased the oil oleic acid contents with a decrease in linoleic acid contents, which resulted in increased oil oleic/linoleic ratio of both maize cultivars. However, no variation was observed in oil stearic and palmitic acid contents due to water stress. A considerable increase in seed oil α-, γ-, δ- and total tocopherols and flavonoids was observed in both maize cultivars. However, oil phenolic content and 1,1′-diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging activity decreased. Foliar-applied GB significantly increased the contents of seed sugar, oil, protein, moisture, fiber, ash, GB contents and micro- and macro-nutrients of both maize cultivars under well irrigated and water deficit conditions. Furthermore, exogenous application of GB increased the oil oleic and linoleinic acid contents. All different lipophilic compounds estimated in the seed oil increased due to foliar applied GB. Furthermore, GB also increased seed oil antioxidant activity appraised in terms of oil DPPH free radical scavenging activity. By summarizing the results, it seemed that exogenously applied GB remained in intact form until later stages of growth and counteracted the inhibitory effects of water deficit on seed and seed oil composition similarly of both maize cultivars. 相似文献
In this study, we determined whether the application of uniconazole alone or combined with ethephon could enhance the seed-filling rates in maize by regulating the endogenous hormone contents. Uniconazole was applied to the foliage at concentrations of 0 (CK), 25 (U25), 50 (U50) and 75 (U75) mg L−1 at the 12-leaf stage. In addition, uniconazole was applied to the foliage at the 12-leaf stage and ethephon at 10 days after silking stage at concentrations of 0 (CK), 25 mg L−1 uniconazole + 100 mg L−1 ethephon (U25 + E100), 50 mg L−1 uniconazole + 200 mg L−1 ethephon (U50 + E200) and 75 mg L−1 uniconazole + 300 mg L−1 ethephon (U75 + E300). Uniconazole applied alone or in combination with ethephon significantly improved ear characters and grain yield. Uniconazole applied alone or combination with ethephon significantly improved the dry matter accumulation in seeds and seed-filling rates. Uniconazole significantly increased the abscisic acid (ABA) and zeatin (Z) + zeatin riboside (ZR) contents of seeds, but reduced the gibberellic acid (GA) contents. The application of uniconazole combined with ethephon decreased the ABA, Z + ZR and GA contents in seeds. The ABA and Z + ZR contents were significantly positively correlated, whereas the GA content was negatively correlated with the maximum seed weight, maximum seed-filling rate and mean seed-filling rate. The application of uniconazole alone significantly improved the seed-filling rates in maize by regulating the endogenous hormone contents. Thus, we conclude that uniconazole application at 50 mg L−1 in the 12-leaf stage can enhance the maize production.
In the present study we determined the association of angiotensin converting enzyme (ACE) and plasminogen activator inhibitor-1 (PAI-1) gene polymorphisms with diabetic retinopathy (DR) and its sub-clinical classes in Pakistani type 2 diabetic patients. A total of 353 diabetic subjects including 160 DR and 193 diabetic non retinopathy (DNR) as well as 198 healthy controls were genotyped by allele specific polymerase chain reaction (PCR) for ACE Insertion/Deletion (ID) polymorphism, rs4646994 in intron 16 and PAI-1 4G/5G (deletion/insertion) polymorphism, rs1799768 in promoter region of the gene. To statistically assess the genotype-phenotype association, multivariate logistic regression analysis was applied to the genotype data of DR, DNR and control individuals as well as the subtypes of DR. The ACE genotype ID was found to be significantly associated with DR (p = 0.009, odds ratio (OR) 1.870 [95% confidence interval (CI) = 1.04–3.36]) and its sub-clinical class non-proliferative DR (NPDR) (p = 0.006, OR 2.250 [95% CI = 1.098–4.620]), while PAI polymorphism did not show any association with DR in the current cohort. In conclusion in Pakistani population the ACE ID polymorphism was observed to be significantly associated with DR and NPDR, but not with the severe form of the disease i.e. proliferative DR (PDR). 相似文献
Biomass‐derived black carbon (biochar) is considered to be an effective tool to mitigate global warming by long‐term C‐sequestration in soil and to influence C‐mineralization via priming effects. However, the underlying mechanism of biochar (BC) priming relative to conventional biowaste (BW) amendments remains uncertain. Here, we used a stable carbon isotope (δ13C) approach to estimate the possible biochar effects on native soil C‐mineralization compared with various BW additions and potential carbon sequestration. The results show that immediately after application, BC suppresses and then increases C‐mineralization, causing a loss of 0.14–7.17 mg‐CO2–C g?1‐C compared to the control (0.24–1.86 mg‐CO2–C g?1‐C) over 1–120 days. Negative priming was observed for BC compared to various BW amendments (?10.22 to ?23.56 mg‐CO2–C g?1‐soil‐C); however, it was trivially positive relative to that of the control (8.64 mg‐CO2–C g?1‐soil‐C). Furthermore, according to the residual carbon and δ13C signature of postexperimental soil carbon, BC‐C significantly increased (P < 0.05) the soil carbon stock by carbon sequestration in soil compared with various biowaste amendments. The results of cumulative CO2–C emissions, relative priming effects, and carbon storage indicate that BC reduces C‐mineralization, resulting in greater C‐sequestration compared with other BW amendments, and the magnitude of this effect initially increases and then decreases and stabilizes over time, possibly due to the presence of recalcitrant‐C (4.92 mg‐C g?1‐soil) in BC, the reduced microbial activity, and the sorption of labile organic carbon (OC) onto BC particles. 相似文献
In the conventional P-450 dependent hydroxylation reaction, the Fe(III) resting state of the enzyme, by a single electron transfer, is reduced to Fe(II), which reacts with O(2) to produce a Fe(III)-O-O intermediate. The latter following the transfer of another electron furnishes a ferric-peroxyanion, Fe(III)-O-O(-), which after protonation leads to the fission of the O-O bond resulting in the formation of Fe(V)O, the key player in the hydroxylation process. Certain members of the P-450 family, including CYP17 and CYP19, catalyze, at the same active site, not only the hydroxylation process but also an acyl-carbon bond cleavage reaction which has been interpreted to involve the nucleophilic attack of the ferric-peroxyanion, Fe(III)-O-O(-), on the acyl carbon to furnish a tetrahedral intermediate which fragments, leading to acyl-carbon cleavage. Evidence is presented to show that in the case of CYP17 the attack of Fe(III)-O-O(-) on the target carbon is promoted by cytochrome b(5), which acts as a conformational regulator of CYP17. It is this regulation of CYP17 that provides a safety mechanism which ensures that during corticoid biosynthesis, which involves 17α-hydroxylation by CYP17, androgen formation is avoided. Finally, a brief account is presented of the inhibitors, of the two enzymes, which have been designed on the basis of their mechanism of action. Article from the Special issue on 'Targeted Inhibitors'. 相似文献