首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4653篇
  免费   221篇
  国内免费   28篇
  2024年   11篇
  2023年   80篇
  2022年   200篇
  2021年   331篇
  2020年   174篇
  2019年   202篇
  2018年   275篇
  2017年   173篇
  2016年   256篇
  2015年   308篇
  2014年   337篇
  2013年   355篇
  2012年   369篇
  2011年   304篇
  2010年   197篇
  2009年   173篇
  2008年   194篇
  2007年   168篇
  2006年   127篇
  2005年   120篇
  2004年   79篇
  2003年   69篇
  2002年   51篇
  2001年   24篇
  2000年   21篇
  1999年   25篇
  1998年   18篇
  1997年   10篇
  1996年   12篇
  1995年   13篇
  1994年   11篇
  1993年   12篇
  1992年   19篇
  1991年   15篇
  1990年   12篇
  1989年   17篇
  1988年   11篇
  1987年   11篇
  1986年   9篇
  1985年   11篇
  1983年   7篇
  1982年   9篇
  1981年   7篇
  1978年   7篇
  1976年   6篇
  1975年   7篇
  1974年   12篇
  1973年   11篇
  1972年   6篇
  1971年   4篇
排序方式: 共有4902条查询结果,搜索用时 15 毫秒
991.
Brassinosteroids (BRs) are an important group of plant steroidal hormones that are actively involved in a myriad of key growth and developmental processes from germination to senescence. Moreover, BRs are known for their effective role in alleviation of stress-induced changes in normal metabolism via the activation of different tolerance mechanisms. Efforts to improve plant growth through exogenous application of BRs (through different modes such as foliar spray, presowing seed treatment, or through root growing medium) have gained considerable ground world over. It has been widely demonstrated that the exogenous application of BRs to stressed plants imparts the stress tolerance mechanisms. In BR-induced regulation of physio-biochemical processes in plants, interaction (crosstalk) of BRs with other phytohormones has been reported. This crosstalk may fine-tune the effective roles of other hormones in regulating stress tolerance. The multifaceted role of BRs consolidated so far has reflected their immense potential to help plants in counteracting the stress-induced changes. The effects of introgression and up- and down-regulation of BR-related genes reported so far to improve crop productivity have been presented here. Strong evidence exists that BRs are involved in signal transduction particularly in the regulation of the mitogen-activated protein kinase (MAPK) cascade, which in turn is involved in controlled development, cell death, and the perception of pathogen-associated molecular pattern (PAMP) signaling. How far BRs are involved in signal transduction pathways operative under stressful environments has also been comprehensively discussed in this review.  相似文献   
992.
Journal of Plant Growth Regulation - Chromium (Cr) is a very toxic heavy metal present in agricultural soils. Soils contaminated with Cr are the major source of Cr entrance into the food chain. The...  相似文献   
993.
Journal of Plant Growth Regulation - Rapid industrialization is potentially contaminating the environment. Tannery is one of the industries producing very high amount of effluents, having a...  相似文献   
994.
Journal of Plant Growth Regulation - Plants face different types of biotic and abiotic stresses during their life span. Heavy metal (HM) stress is considered as one of the most challenging and...  相似文献   
995.
Chili pepper (Capsicum annum L.) is an important economic crop that is severely destroyed by the filamentous oomycete Phytophthora capsici. Little is known about this pathogen in key chili pepper farms in Punjab province, Pakistan. We investigated the genetic diversity of P. capsici strains using standard taxonomic and molecular tools, and characterized their colony growth patterns as well as their disease severity on chili pepper plants under the greenhouse conditions. Phylogenetic analysis based on ribosomal DNA (rDNA), β-tubulin and translation elongation factor 1α loci revealed divergent evolution in the population structure of P. capsici isolates. The mean oospore diameter of mating type A1 isolates was greater than that of mating type A2 isolates. We provide first evidence of an uneven distribution of highly virulent mating type A1 and A2 of P. capsici that are insensitive to mefenoxam, pyrimorph, dimethomorph, and azoxystrobin fungicides, and represent a risk factor that could ease outpacing the current P. capsici management strategies.  相似文献   
996.
We synthesized a library of aminopyrazole analogs to systematically explore the hydrophobic pocket adjacent to the hinge region and the solvent exposed region of cyclin dependent kinases. Structure-activity relationship studies identified an optimal substitution for the hydrophobic pocket and analog 24 as a potent and selective CDK2/5 inhibitor.  相似文献   
997.
Phenazine-1-carboxamide (PCN) is one of the major biocontrol agents produced by plant growth-promoting rhizosphere (PGPR) pseudomonads including Pseudomonas chlororaphis. In this study, a combined strategy of genetic modification and statistical experimental designs was applied to obtain mutants of P. chlororaphis strains with high-yield PCN production. To achieve this, the lon gene was knocked out in wild-type P. chlororaphis HT66 and the breeding mutant P3 strain with a non-scar deletion strategy. The resulting HT66Δlon and P3Δlon mutants produced a significantly higher PCN production in shake-flask cultures which was 5- and  9-folds greater than their native counterparts. The potential ability of strain P3Δlon for PCN production was further optimized by statistical designs. A two-level Plackett–Burman (PB) experimental design with six variables was employed to scrutinize medium components that significantly influence PCN production. Notably, glycerol, tryptone, and soy peptone were identified to be the most significant factors (p?<?0.05). Response surface methodology (RSM) based on the central composite design (CCD) was adopted to determine these factors optimal levels and their interactive effects between culture components for PCN production. The predicted maximum PCN production was 9002 mg/L, whereas an actual PCN production of 9174 mg/L was recorded in the validation experiments using the optimal medium containing glycerol 37.08 mL/L, tryptone 20.00 g/L, and soy peptone 25.03 g/L, which was nearly threefolds higher than without optimization and 20-folds higher than the wild-type strain. In conclusion, the results revealed that P. chlororaphis display a high potential for industrial-scale production for phenazine biopesticides.  相似文献   
998.
Four series of heterocyclic compounds, namely, tetrahydro-2H-1,3,5-thiadiazine thione derivatives were synthesized in good to excellent yields and were screened for their in vitro antileishmanial activities against Leishmania major (promastigotes). Most of the compounds showed significant antileishmanial activity within the range of IC50?=?15.48–39.36?μM when compared with standard pentamidine (IC50?=?14.95?μM). The structure-activity relationship showed that N-3 and N-5 substituents have a key role against leishmanicidal activity. The ester analogues (series B) were found to have a 1.5 to 5-fold reduced activity compared to their acidic counterparts. Cytotoxicity against mammalian mouse fibroblast 3?T3 cells was also evaluated and compared between the acid and its ester analogue. The reduction of antileishmanial activity and loss of toxicity in the newly developed THTT ester derivative indicates that these compounds can be used as a template study for the production of effective antileishmanial ester prodrugs.  相似文献   
999.
Rice (Oryza sativa L.) is one of the most important crops in the world to feed ever increasing world population. An increase in output of rice crop per unit is imminent. Alternate wetting and moderate soil drying (AWD) irrigation technology has been recommended as a good practice method to improve grain filling of rice crop at late growing stages. Physiological, molecular and agronomic parameters were adopted to elucidate the role of rice stem and sheath under AWD treatment as compared to the conventional irrigation during the grain filling stage. AWD treatment significantly increased stem and sheath dry weight, carbohydrate reserves and their remobilization to the grain, especially inferior spikelet grains. The results showed that the transport and conversion rate of the stem and sheath photoassimilates increased by 9.87 and 8.37%, respectively. Furthermore, protein expression profiles of the stem and sheath at 10, 20 and 30 days after flowering were analyzed. We examined 220 differentially expressed proteins, and successfully identified 166 proteins, including 71 proteins in the stem and 95 proteins in the sheath involved in thirteen important functional groups. Our results suggest that the AWD treatment at the rice grain filling stage is highly conducive to trigger the mobilization of the N assimilates from leave and root to the stem and sheath, and then promotes to remobilize the reserves to the grain through coordinately expressed proteins involved in photosynthesis, systematic senescence, oxidative stress defense, signal transduction and other metabolisms. This study reveals the metabolic mechanism of the stem and sheath in response to AWD at grain filling stage, and provides theoretical evidence for better quality control and scientific improvement of rice in practice.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号