首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4132篇
  免费   204篇
  国内免费   28篇
  4364篇
  2024年   11篇
  2023年   86篇
  2022年   196篇
  2021年   332篇
  2020年   172篇
  2019年   188篇
  2018年   275篇
  2017年   176篇
  2016年   242篇
  2015年   298篇
  2014年   328篇
  2013年   315篇
  2012年   334篇
  2011年   308篇
  2010年   179篇
  2009年   155篇
  2008年   158篇
  2007年   134篇
  2006年   100篇
  2005年   92篇
  2004年   64篇
  2003年   51篇
  2002年   38篇
  2001年   8篇
  2000年   9篇
  1999年   9篇
  1998年   11篇
  1997年   7篇
  1996年   8篇
  1995年   8篇
  1994年   6篇
  1993年   9篇
  1992年   9篇
  1991年   5篇
  1989年   5篇
  1988年   4篇
  1987年   5篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1974年   3篇
  1969年   1篇
  1968年   1篇
排序方式: 共有4364条查询结果,搜索用时 15 毫秒
21.
Engineering enzymes with improved catalytic properties in non-natural environments have been concerned with their diverse industrial and biotechnological applications. Immobilization represents a promising but straightforward route, and immobilized biocatalysts often display higher activities and stabilities compared to free enzymes. Owing to their unique physicochemical characteristics, including the high-specific surface area, exceptional chemical, electrical, and mechanical properties, efficient enzyme loading, and multivalent functionalization, nano-based materials are postulated as suitable carriers for biomolecules or enzyme immobilization. Enzymes immobilized on nanomaterial-based supports are more robust, stable, and recoverable than their pristine counterparts, and are even used for continuous catalytic processes. Furthermore, the unique intrinsic properties of nanomaterials, particularly nanoparticles, also confer the immobilized enzymes to be used for their broader applications. Herein, an effort has been made to present novel potentialities of multi-point enzyme immobilization in the current biotechnological sector. Various nano-based platforms for enzyme/biomolecule immobilization are discussed in the second part of the review. In summary, recent developments in the use of nanomaterials as new carriers to construct robust nano-biocatalytic systems are reviewed, and future trends are pointed out in this article.  相似文献   
22.
Experiments were performed to determine whether seed priming with different concentrations (100, 150, and 200 mg/L) ofauxins (indoleacetic acid (IAA), indolebutyric acid (IBA), or their precursor tryptophane (Trp)) could alter salinity inducedperturbances in salicylic acid and ion concentrations and, hence, growth in wheat (Triticum aestivum L.) cultivars, namelyM. H.-97 (salt intolerant) and Inqlab-91 (salt tolerant). Primed and non-primed seeds were sown in Petri dishes in a growthroom, as well as in a field treated with 15 dS/m NaCl salinity. All priming agents, except IBA, increased the final germinationpercentage in both cultivars. The seedlings of either cultivar raised from Trp-treated seeds had greater dry biomass whenunder salt stress. In field experiments, Trp priming was much more effective in mediating the increase in grain yield,irrespective of the cultivar, under salt stress. The alleviatory effect of Trp was found to be associated with reduced uptakeof Na~ in the roots and subsequent translocation to the shoots, as well as increased partitioning of Ca~(2 )in the roots ofsalt-stressed wheat plants. Plants of both cultivars raised from Trp-and IAA-treated seeds accumulated free salicylic acidin their leaves when under salt stress. Overall, the Trp priming-induced improvement in germination and the subsequentgrowth of wheat plants could be related to ion homeostasis when under salt stress. The possible involvement of salicylicacid in the Trp priming-induced better growth under conditions of salt stress is discussed.  相似文献   
23.
DNA geminiviruses are thought to be targets of RNA silencing. Here, we characterize small interfering (si) RNAs—the hallmarks of silencing—associated with Cabbage leaf curl begomovirus in Arabidopsis and African cassava mosaic begomovirus in Nicotiana benthamiana and cassava. We detected 21, 22 and 24 nt siRNAs of both polarities, derived from both the coding and the intergenic regions of these geminiviruses. Genetic evidence showed that all the 24 nt and a substantial fraction of the 22 nt viral siRNAs are generated by the dicer-like proteins DCL3 and DCL2, respectively. The viral siRNAs were 5′ end phosphorylated, as shown by phosphatase treatments, and methylated at the 3′-nucleotide, as shown by HEN1 miRNA methylase-dependent resistance to β-elimination. Similar modifications were found in all types of endogenous and transgene-derived siRNAs tested, but not in a major fraction of siRNAs from a cytoplasmic RNA tobamovirus. We conclude that several distinct silencing pathways are involved in DNA virus-plant interactions.  相似文献   
24.
Soilborne pathogens such as cereal cyst nematode (CCN; Heterodera avenae) and root lesion nematode (Pratylenchus neglectus; PN) cause substantial yield losses in the major cereal-growing regions of the world. Incorporating resistance into wheat cultivars and breeding lines is considered the most cost-effective control measure for reducing nematode populations. To identify loci with molecular markers linked to genes conferring resistance to these pathogens, we employed a genome-wide association approach in which 332 synthetic hexaploid wheat lines previously screened for resistance to CCN and PN were genotyped with 660 Diversity Arrays Technology (DArT) markers. Two sequence-tagged site markers reportedly linked to genes known to confer resistance to CCN were also included in the analysis. Using the mixed linear model corrected for population structure and familial relatedness (Q+K matrices), we were able to confirm previously reported quantitative trait loci (QTL) for resistance to CCN and PN in bi-parental crosses. In addition, we identified other significant markers located in chromosome regions where no CCN and PN resistance genes have been reported. Seventeen DArT marker loci were found to be significantly associated with CCN and twelve to PN resistance. The novel QTL on chromosomes 1D, 4D, 5B, 5D and 7D for resistance to CCN and 4A, 5B and 7B for resistance to PN are suggested to represent new sources of genes which could be deployed in further wheat improvement against these two important root diseases of wheat.  相似文献   
25.
Circulating tumor cells (CTCs) and their clusters, also known as circulating tumor microemboli (CTM), have emerged as valuable tool that can provide mechanistic insights into the tumor heterogeneity, clonal evolution, and stochastic events within the metastatic cascade. However, recent investigations have hinted that CTM may not be mere aggregates of tumor cells but cells comprising CTM exhibit distinct phenotypic and molecular characteristics in comparison to single CTCs. Moreover, in many cases CTM demonstrated higher metastatic potential and resistance to apoptosis as compared to their single cell counterparts. Thus, their evaluation and enumeration may provide a new dimension to our understanding of cancer biology and metastatic cancer spread as well as offer novel theranostic biomarkers. Most of the existing technologies for isolation of hematogenous tumor cells largely favor single CTCs, hence there is a need to devise new approaches, or re-configure the existing ones, for specific and efficient CTM isolation. Here we review existing knowledge and insights on CTM biology. Furthermore, a critical commentary on current and emerging trends in CTM enrichment and characterization along with recently developed ex-vivo CTC expansion methodologies is presented with the aim to facilitate researchers to identify further avenues of research and development.  相似文献   
26.
DNA strand breaks are repaired by DNA synthesis from an exposed DNA end paired with a homologous DNA template. DNA polymerase delta (Pol δ) catalyses DNA synthesis in multiple eukaryotic DNA break repair pathways but triggers genome instability unless its activity is restrained. We show that human HelQ halts DNA synthesis by isolated Pol δ and Pol δ-PCNA-RPA holoenzyme. Using novel HelQ mutant proteins we identify that inhibition of Pol δ is independent of DNA binding, and maps to a 70 amino acid intrinsically disordered region of HelQ. Pol δ and its POLD3 subunit robustly stimulated DNA single-strand annealing by HelQ, and POLD3 and HelQ interact physically via the intrinsically disordered HelQ region. This data, and inability of HelQ to inhibit DNA synthesis by the POLD1 catalytic subunit of Pol δ, reveal a mechanism for limiting DNA synthesis and promoting DNA strand annealing during human DNA break repair, which centres on POLD3.  相似文献   
27.
28.
BackgroundFamily involvement in overcoming the severity of leprosy is very important in the life of leprosy sufferers in communities who experience the clinical and, psychological, social and behavioral consequences of the disease. However, this need, psychosocial, is felt to be not optimal. This study is to identify how the experiences of family members as caregivers provide assistance to individuals with leprosy in improving healing and maintaining patterns of interaction in the family.MethodsThe design uses qualitative research with in-depth, face-to-face interviews with family members in a semi-structured manner with the hope of obtaining complete data. Using purposive sampling with Participatory Interpretative Phenomenology analysis, there are 12 families with 15 family members consisting of 4 men and 11 women.ResultsThis study produced a family theme that tried to follow what would happen to individuals with leprosy, with four sub-categories: 1) Using various coping alternatives to recognize the disease, 2) Family members in the shadow of leprosy, 3) Trying to empathize with other family members. sick, 4) Caring for the emotional response of the family and seeking support.ConclusionsThis analysis shows that deficiency in cognitive aspects can be closed by maintaining a lifestyle in the family through efforts to understand, support, establish communication, increase maximum involvement in restoring self-confidence, especially in individuals with leprosy with psychosocial problems in the family. The results of this study can be used as psychosocial support in maintaining communication between family members to support treatment programs and accelerate the recovery of leprosy.  相似文献   
29.
30.
An increase in the amount of nickel in LiMO2 (M = Ni, Co, Mn) layered system is actively pursued in lithium‐ion batteries to achieve higher capacity. Nevertheless, fundamental effects of Ni element in the three‐component layered system are not systematically studied. Therefore, to unravel the role of Ni as a major contributor to the structural and electrochemical properties of Ni‐rich materials, Co‐fixed LiNi0.5+xCo0.2Mn0.3–xO2 (x = 0, 0.1, and 0.2) layered materials are investigated. The results, on the basis of synchrotron‐based characterization techniques, present a decreasing trend of Ni2+ content in Li layer with increasing total Ni contents. Moreover, it is discovered that the chex.‐lattice parameter of layered system is not in close connection with the interslab thickness related to actual Li ion pathway. The interslab thickness increases with increasing Ni concentration even though the chex.‐lattice parameter decreases. Furthermore, the lithium ion pathway is preserved in spite of the fact that the c‐axis is collapsed at highly deintercalated states. Also, a higher Ni content material shows better structural properties such as larger interslab thickness, lower cation disorder, and smoother phase transition, resulting in better electrochemical properties including higher Li diffusivity and lower overpotential when comparing materials with lower Ni content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号