首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5901篇
  免费   306篇
  国内免费   28篇
  2024年   16篇
  2023年   105篇
  2022年   239篇
  2021年   426篇
  2020年   207篇
  2019年   235篇
  2018年   334篇
  2017年   213篇
  2016年   321篇
  2015年   375篇
  2014年   399篇
  2013年   451篇
  2012年   438篇
  2011年   397篇
  2010年   252篇
  2009年   221篇
  2008年   234篇
  2007年   214篇
  2006年   170篇
  2005年   149篇
  2004年   130篇
  2003年   105篇
  2002年   86篇
  2001年   46篇
  2000年   36篇
  1999年   25篇
  1998年   29篇
  1997年   21篇
  1996年   17篇
  1995年   23篇
  1994年   14篇
  1993年   20篇
  1992年   23篇
  1991年   20篇
  1989年   12篇
  1988年   15篇
  1987年   9篇
  1986年   13篇
  1985年   17篇
  1984年   11篇
  1982年   11篇
  1981年   12篇
  1980年   11篇
  1979年   10篇
  1978年   14篇
  1977年   9篇
  1976年   10篇
  1974年   12篇
  1973年   10篇
  1969年   9篇
排序方式: 共有6235条查询结果,搜索用时 406 毫秒
81.
82.
We studied a sample of 75 Chinese, 73 Malay, and 29 Indian healthy neonates taking part in a cohort study to examine potential differences in neonatal brain morphology and white matter microstructure as a function of ethnicity using both structural T2-weighted magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). We first examined the differences in global size and morphology of the brain among the three groups. We then constructed the T2-weighted MRI and DTI atlases and employed voxel-based analysis to investigate ethnic differences in morphological shape of the brain from the T2-weighted MRI, and white matter microstructure measured by fractional anisotropy derived from DTI. Compared with Malay neonates, the brains of Indian neonates’ tended to be more elongated in anterior and posterior axis relative to the superior-inferior axis of the brain even though the total brain volume was similar among the three groups. Although most anatomical regions of the brain were similar among Chinese, Malay, and Indian neonates, there were anatomical variations in the spinal-cerebellar and cortical-striatal-thalamic neural circuits among the three populations. The population-related brain regions highlighted in our study are key anatomical substrates associated with sensorimotor functions.  相似文献   
83.
Implantable cardioverter-defibrillators (ICDs) terminate ventricular tachycardia (VT) and ventricular fibrillation (VF) with high efficacy and can protect patients from sudden cardiac death (SCD). However, inappropriate shocks may occur if tachycardias are misdiagnosed. Inappropriate shocks are harmful and impair patient quality of life. The risk of inappropriate therapy increases with lower detection rates programmed in the ICD. Single-chamber detection poses greater risks for misdiagnosis when compared with dual-chamber devices that have the benefit of additional atrial information. However, using a dual-chamber device merely for the sake of detection is generally not accepted, since the risks associated with the second electrode may outweigh the benefits of detection. Therefore, BIOTRONIK developed a ventricular lead called the LinoxSMART S DX, which allows for the detection of atrial signals from two electrodes positioned at the atrial part of the ventricular electrode. This device contains two ring electrodes; one that contacts the atrial wall at the junction of the superior vena cava (SVC) and one positioned at the free floating part of the electrode in the atrium. The excellent signal quality can only be achieved by a special filter setting in the ICD (Lumax 540 and 740 VR-T DX, BIOTRONIK). Here, the ease of implantation of the system will be demonstrated.  相似文献   
84.
Hedgehog signaling pathway activation has been implicated in the pathogenesis of NASH. Despite this concept, hedgehog pathway inhibitors have not been explored. Thus, we examined the effect of vismodegib, a hedgehog signaling pathway inhibitor, in a diet-induced model of NASH. C57BL/6 mice were placed on 3-month chow or FFC (high saturated fats, fructose, and cholesterol) diet. One week prior to sacrifice, mice were treated with vismodegib or vehicle. Mice fed the FFC diet developed significant steatosis, which was unchanged by vismodegib therapy. In contrast, vismodegib significantly attenuated FFC-induced liver injury as manifested by reduced serum ALT and hepatic TUNEL-positive cells. In line with the decreased apoptosis, vismodegib prevented FFC-induced strong upregulation of death receptor DR5 and its ligand TRAIL. In addition, FFC-fed mice, but not chow-fed animals, underwent significant liver injury and apoptosis following treatment with a DR5 agonist; however, this injury was prevented by pre-treatment with vismodegib. Consistent with a reduction in liver injury, vismodegib normalized FFC-induced markers of inflammation including mRNA for TNF-α, IL-1β, IL-6, monocyte chemotactic protein-1 and a variety of macrophage markers. Furthermore, vismodegib in FFC-fed mice abrogated indices of hepatic fibrogenesis. In conclusion, inhibition of hedgehog signaling with vismodegib appears to reduce TRAIL-mediated liver injury in a nutrient excess model of NASH, thereby attenuating hepatic inflammation and fibrosis. We speculate that hedgehog signaling inhibition may be salutary in human NASH.  相似文献   
85.
In this study, the diversity of Plasmodium vivax populations circulating in Pakistan and Iran has been investigated by using circumsporozoite protein (csp) and merozoite surface proteins 1 and 3α (msp-1 and msp-3α) genes as genetic markers. Infected P. vivax blood samples were collected from Pakistan (n = 187) and Iran (n = 150) during April to October 2008, and were analyzed using nested-PCR/RFLP and sequencing methods. Genotyping pvmsp-1 (variable block 5) revealed the presence of type 1, type 2 and recombinant type 3 allelic variants, with type 1 predominant, in both study areas. The sequence analysis of 33 P. vivax isolates from Pakistan and 30 from Iran identified 16 distinct alleles each, with one allele (R-8) from Iran which was not reported previously. Genotyping pvcsp gene also showed that VK210 type is predominant in both countries. Moreover, based on the size of amplified fragment of pvmsp-3α, three major types: type A (1800 bp), type B (1500 bp) and type C (1200 bp), were distinguished among the examined isolates that type A was predominant among Pakistani (72.7%) and Iranian (77.3%) parasites. PCR/RFLP products of pvmsp-3α with HhaI and AluI have detected 40 and 39 distinct variants among Pakistani and Iranian examined isolates, respectively. Based on these three studied genes, the rate of combined multiple genotypes were 30% and 24.6% for Pakistani and Iranian P. vivax isolates, respectively. These results indicate an extensive diversity in the P. vivax populations in both studies.  相似文献   
86.
87.
In this study, scalable, flame spray synthesis is utilized to develop defective ZnO nanomaterials for the concurrent generation of H2 and CO during electrochemical CO2 reduction reactions (CO2RR). The designed ZnO achieves an H2/CO ratio of ≈1 with a large current density (j) of 40 mA cm?2 during long‐term continuous reaction at a cell voltage of 2.6 V. Through in situ atomic pair distribution function analysis, the remarkable stability of these ZnO structures is explored, addressing the knowledge gap in understanding the dynamics of oxide catalysts during CO2RR. Through optimization of synthesis conditions, ZnO facets are modulated which are shown to affect reaction selectivity, in agreement with theoretical calculations. These findings and insights on synthetic manipulation of active sites in defective metal‐oxides can be used as guidelines to develop active catalysts for syngas production for renewable power‐to‐X to generate a range of fuels and chemicals.  相似文献   
88.
89.
90.
The ER‐bound kinase/endoribonuclease (RNase), inositol‐requiring enzyme‐1 (IRE1), regulates the phylogenetically most conserved arm of the unfolded protein response (UPR). However, the complex biology and pathology regulated by mammalian IRE1 cannot be fully explained by IRE1’s one known, specific RNA target, X box‐binding protein‐1 (XBP1) or the RNA substrates of IRE1‐dependent RNA degradation (RIDD) activity. Investigating other specific substrates of IRE1 kinase and RNase activities may illuminate how it performs these diverse functions in mammalian cells. We report that macrophage IRE1 plays an unprecedented role in regulating phosphatidylinositide‐derived signaling lipid metabolites and has profound impact on the downstream signaling mediated by the mammalian target of rapamycin (mTOR). This cross‐talk between UPR and mTOR pathways occurs through the unconventional maturation of microRNA (miR) 2137 by IRE1’s RNase activity. Furthermore, phosphatidylinositol (3,4,5) phosphate (PI(3,4,5)P3) 5‐phosphatase‐2 (INPPL1) is a direct target of miR‐2137, which controls PI(3,4,5)P3 levels in macrophages. The modulation of cellular PI(3,4,5)P3/PIP2 ratio and anabolic mTOR signaling by the IRE1‐induced miR‐2137 demonstrates how the ER can provide a critical input into cell growth decisions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号