首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3645篇
  免费   172篇
  国内免费   27篇
  2024年   9篇
  2023年   75篇
  2022年   170篇
  2021年   311篇
  2020年   156篇
  2019年   178篇
  2018年   248篇
  2017年   152篇
  2016年   220篇
  2015年   268篇
  2014年   287篇
  2013年   286篇
  2012年   291篇
  2011年   244篇
  2010年   159篇
  2009年   141篇
  2008年   136篇
  2007年   122篇
  2006年   85篇
  2005年   76篇
  2004年   46篇
  2003年   40篇
  2002年   28篇
  2001年   5篇
  2000年   6篇
  1999年   8篇
  1998年   9篇
  1997年   6篇
  1996年   8篇
  1995年   8篇
  1994年   6篇
  1993年   8篇
  1992年   8篇
  1991年   4篇
  1990年   1篇
  1989年   5篇
  1988年   2篇
  1987年   5篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1974年   3篇
  1968年   1篇
排序方式: 共有3844条查询结果,搜索用时 31 毫秒
181.

Hypersaline ecosystems offer unique habitats to microbial populations capable of withstanding extreme stress conditions and producing novel metabolites of commercial importance. Herein, we have characterized for the first time the production of bioactive pigments from newly isolated halophilic bacterial species. Halophilic bacteria were isolated from Khewra Salt Range of Pakistan. Three distinctly colored isolates were selected for pigment production. Selected colonies were identified as Aquisalibacillus elongatus MB592, Salinicoccus sesuvii MB597, and Halomonas aquamarina MB598 based on morphological, biochemical, and physiological evidences as well as 16S rRNA analysis. The optimum pigment production observed at mesophilic condition, nearly neutral pH, and moderate salinity was validated using response surface methodology. Different analytical techniques (UV spectroscopy, infrared spectroscopy, and HPLC) characterized these purified pigments as derivatives of bacterioruberin carotenoids. Antioxidant activity of pigments revealed up to 85% free-radical scavenging activity at the concentration of 30 µg ml−1. Pigments also showed significant antimicrobial activity against Bacillus subtilis, Bacillus pumilus, Enterococcus faecalis, Bacillus cereus, Klebsiella pneumoniae, Alcaligenes faecalis, Pseudomonas geniculata, Enterococcus faecium, Aspergillus fumigatus, Aspergillus flavus, Fusarium solani, and Mucor spp., suggesting potential biomedical applications.

  相似文献   
182.
The International Journal of Life Cycle Assessment - Palm oil is considered as the primary source of income for many farmers in Southeast Asia and become a very important agricultural commodity for...  相似文献   
183.
Pyrazole constitutes an important heterocyclic family covering a broad range of synthetic as well as natural products that exhibit numerous chemical, biological, agrochemical and pharmacological properties. In order to explore compounds with good fungicidal activity, a series of new pyrazole derivatives containing 5-phenyl-2-furan were designed and synthesized. In vitro and in vivo fungicidal activities were evaluated and the compound ethyl-1-(5-phenylfuran-2-carbonyl)-5-propyl-1H-pyrazole-3-carboxylate (I8) displayed significant fungicidal activity against various fungi, especially against P. infestans. The structures of the novel pyrazole derivatives were confirmed by 1H NMR, 13C NMR, MS, elemental analysis and X-ray single crystal diffraction. Further study showed that compound I8 might act on the synthesis of cell walls from morphological and ultrastructural studies by SEM and TEM. The results also revealed that compound I8 could block the nutritional transportation leading to cells senescence and death. These results suggested that the novel pyrazole derivatives proved to be promising lead compounds.  相似文献   
184.
In searchof the potenttherapeutic agent as an α-glucosidase inhibitor, we have synthesized twenty-five analogs (125) of quinoline-based Schiff bases as an inhibitoragainst α-glucosidase enzyme under positive control acarbose (IC50 = 38.45 ± 0.80 µM). From the activity profile it was foundthat analogs 1, 2, 3, 4, 11, 12 and 20with IC50values 12.40 ± 0.40, 9.40 ± 0.30, 14.10 ± 0.40, 6.20 ± 0.30, 14.40 ± 0.40, 7.40 ± 0.20 and 13.20 ± 0.40 µMrespectively showed most potent inhibition among the series even than standard drug acarbose (IC50 = 38.45 ± 0.80 µM). Here in the present study analog 4 (IC50 = 6.20 ± 0.30 µM) was found with many folds better α-glucosidase inhibitory activity than the reference drug. Eight analogs like 5, 7, 8, 16, 17, 22, 24 and 25 among the whole series displayed less than 50% inhibition. The substituents effects on phenyl ring thereby superficially established through SAR study. Binding interactions of analogs and the active site of ligands proteins were confirmed through molecular docking study. Spectroscopic techniques like 1H NMR, 13C NMR and ESIMS were used for characterization.  相似文献   
185.
Widespread use of cerium oxide (CeO2) nanoparticles (NPs) is found in almost all areas of research due to their distinctive properties. CeO2 NPs synthesized via green chemistry have been characterized for antioxidant, phytochemical, and biological potential. Physical characterization through scanning electron microscopy, XRD, and TGA showed that the NPs are circular in shape, 20‐25 nm in size, and stable in a wide range of temperature. NPs display significant antioxidant (32.7% free radical scavenging activity) and antileishmanial (IC50 48 µg mL?1) properties. In vitro toxicity tested against lymphocytes verified that NPs are biocompatible (99.38% viability of lymphocytes at 2.5 μg mL?1). In vivo toxicity experiments showed no harmful effects on rat serum chemistry and histology of various organs and did not even change the concentration of antioxidative enzymes, total protein contents, lipid peroxidation, and nitrosative stress. These observations are in line with the statement that plant‐based synthesis of CeO2 NPs lessens or nullifies in vitro and in vivo toxicity and hence CeO2 NPs are regarded as a safe and biocompatible material to be used in drug delivery.  相似文献   
186.
Enzyme-based catalysis has become one of the most important disciplines in organic synthesis and plays a noteworthy role in the establishment of many chemical industries, e.g. fine chemicals, food or energy, textiles, agricultural, cosmeceutical, medicinal and pharmaceutical industries. However, pristine enzymes fail to demonstrate requisite functionalities for an industrial setting where extremely specific and stable catalysts are required. Immobilization enhances the catalytic stability and activity of enzymes and trims the overall cost burden of the enzyme. Therefore, it widely endeavours for proficient, sustainable, and environmentally responsive catalytic processes. Amongst several immobilization strategies, e.g. (1) supports-assisted, i.e. physical or covalent coupling and (2) supports-free techniques, i.e. cross-linked enzyme crystals (CLECs) or aggregates are the most promising ones and widely pursued for enzyme immobilization purposes. This perspective review focuses on up-to-date developments in the area of enzyme immobilization and presents their potentialities to upgrade and/or modify enzyme properties. Both types of immobilization strategies, i.e. supports-assisted and supports-free techniques are discussed with particular reference to CLECs or aggregates and protein-coated microcrystals. Also, several useful traits achieved after immobilization are also discussed in the second half of the review.  相似文献   
187.
188.
The evolution of petroleum‐derived polymers is one of the crowning accomplishments of the past century. Although the significant economic gains from this industrial model of resource utilization are achieved, the environmental impacts are fatal. One of the principles of sustainable development is to replace such polymers with potential alternatives derived from renewable materials. Biopolymers derived from natural resources afford a new, versatile, environmentally benign feedstock that could exhibit closed‐loop life cycles as part of a future material's industrial ecology. However, the solubility and processability of biopolymer materials provoke a serious bottleneck owing to their dense networks of inter ‐ and intramolecular bondings and structural heterogeneity. Recently, ionic liquids (ILs) have emerged as promising green solvents and acquired augmented appreciation for their peerless power of biopolymer processing. Among the fourteen principle of green chemistry, the two key elements encourage the exploitation of renewable raw materials by using environmentally benign solvents that cover in dissolution of biopolymers using ILs. This mini review represents a brief overview of the comprehensive ILs assisted extraction and processing of various biopolymeric materials for value‐added applications.  相似文献   
189.
Hydrophobic interaction chromatography, an important and effective purification strategy, is generally used for the purification of variety of biomolecules. A basic understanding of the protein interaction behavior is required to effectively separate these biomolecules. A colloidal type extended Derjaguin, Landau, Verwey, and Overbeek calculations were utilized to study the interactions behavior of model proteins to commercially available hydrophobic chromatographic materials that is, Toyopearl Phenyl 650C and Toyopearl Butyl 650C. Physicochemical properties of selected model proteins were achieved by contact angle and zeta potential measurements. The contact angle of chromatographic materials used was achieved through sessile drop method on disrupted beads and capillary penetration method (CPM) on intact beads. The surface properties were further used to calculate the interactions of the proteins to chromatographic supports. The calculated secondary energy minimum of the proteins with the chromatographic materials (from the contact angle values determined through both methods can be correlated with the retention volumes from the real chromatography. The secondary energy minimum values are higher for each protein to the chromatographic materials calculated from the inputs derived through sessile drop method compared to CPM. For instance, immunoglobulin G has secondary energy minimum value of 0.17 kT compared to 0.11 kT, obtained through sessile drop method and CPM, respectively. Average relative values of the energy minimum calculated for all proteins are as 1.51 kT and 1.29 kT for Toyopearl Butyl 650C and Toyopearl Phenyl 650C, respectively, as a conversion factor for estimation of secondary energy minimum for both methods.  相似文献   
190.
Recent data have revealed that epigenetic alterations, including DNA methylation and chromatin structure changes, are among the earliest molecular abnormalities to occur during tumorigenesis. The inherent thermodynamic stability of cytosine methylation and the apparent high specificity of the alterations for disease may accelerate the development of powerful molecular diagnostics for cancer. We report a genome-wide analysis of DNA methylation alterations in breast cancer. The approach efficiently identified a large collection of novel differentially DNA methylated loci (approximately 200), a subset of which was independently validated across a panel of over 230 clinical samples. The differential cytosine methylation events were independent of patient age, tumor stage, estrogen receptor status or family history of breast cancer. The power of the global approach for discovery is underscored by the identification of a single differentially methylated locus, associated with the GHSR gene, capable of distinguishing infiltrating ductal breast carcinoma from normal and benign breast tissues with a sensitivity and specificity of 90% and 96%, respectively. Notably, the frequency of these molecular abnormalities in breast tumors substantially exceeds the frequency of any other single genetic or epigenetic change reported to date. The discovery of over 50 novel DNA methylation-based biomarkers of breast cancer may provide new routes for development of DNA methylation-based diagnostics and prognostics, as well as reveal epigenetically regulated mechanism involved in breast tumorigenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号