首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3667篇
  免费   172篇
  国内免费   27篇
  3866篇
  2024年   11篇
  2023年   82篇
  2022年   183篇
  2021年   311篇
  2020年   156篇
  2019年   178篇
  2018年   248篇
  2017年   152篇
  2016年   220篇
  2015年   268篇
  2014年   287篇
  2013年   286篇
  2012年   291篇
  2011年   244篇
  2010年   159篇
  2009年   141篇
  2008年   136篇
  2007年   122篇
  2006年   85篇
  2005年   76篇
  2004年   46篇
  2003年   40篇
  2002年   28篇
  2001年   5篇
  2000年   6篇
  1999年   8篇
  1998年   9篇
  1997年   6篇
  1996年   8篇
  1995年   8篇
  1994年   6篇
  1993年   8篇
  1992年   8篇
  1991年   4篇
  1990年   1篇
  1989年   5篇
  1988年   2篇
  1987年   5篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1974年   3篇
  1968年   1篇
排序方式: 共有3866条查询结果,搜索用时 0 毫秒
171.
172.
The major aluminum (Al) tolerance gene in wheat ALMT1 confers. An Al-activated efflux of malate from root apices. We determined the genomic structure of the ALMT1 gene and found it consists of 6 exons interrupted by 5 introns. Sequencing a range of wheat genotypes identified 3 alleles for ALMT1, 1 of which was identical to the ALMT1 gene from an Aegilops tauschii accession. The ALMT1 gene was mapped to chromosome 4DL using 'Chinese Spring' deletion lines, and loss of ALMT1 coincided with the loss of both Al tolerance and Al-activated malate efflux. Aluminium tolerance in each of 5 different doubled-haploid populations was found to be conditioned by a single major gene. When ALMT1 was polymorphic between the parental lines, QTL and linkage analyses indicated that ALMT1 mapped to chromosome 4DL and cosegregated with Al tolerance. In 2 populations examined, Al tolerance also segregated with a greater capacity for Al-activated malate efflux. Aluminium tolerance was not associated with a particular coding allele for ALMT1, but was significantly correlated with the relative level of ALMT1 expression. These findings suggest that the Al tolerance in a diverse range of wheat genotypes is primarily conditioned by ALMT1.  相似文献   
173.
The present study is concerned with the isolation and screening of different strains of Aspergillus oryzae for the production of alpha amylase. Ninety strains were isolated from soil and tested for the production of alpha amylase in shake flasks. Of all the strains tested, Aspergillus oryzae GCB-32 and Aspergillus oryzae GCB-35 gave maximum production of alpha amylase. Different culture media were screened for the production of alpha amylase by these two strains. M1 medium containing starch, yeast extract, NH4Cl, MgSO4·7H2O and CaCl2 gave the maximum production of alpha amylase by both the strains Aspergillus oryzae GCB-32 and Aspergillus oryzae GCB-35.Kinetic analysis revealed that the values of product yield coefficient(Yp/x) and specific product yield coefficient(qp) were found highly significant(p≤0.05) when medium M1 was used for the enzyme production.  相似文献   
174.
In order to investigate the effects of HBK3, a spruce gene member of the class I KNOX family, during somatic embryogenesis, sense (HBK3-S) and antisense (HBK3-A) Norway spruce (Picea abies) lines were generated. Somatic embryos produced from these lines were then analysed at morphological and structural levels. Compared with control, differentiation of immature somatic embryos from pro-embryogenic masses (PEMs) was accelerated in lines overexpressing HBK3 (HBK3-S). Such immature embryos showed enlarged embryogenic heads and were able to produce fully developed cotyledonary embryos at higher frequency. Furthermore, HBK3-S embryos had enlarged shoot apical meristems (SAMs) and enlarged expression pattern of PgAGO, a molecular marker gene specific to meristematic cells. Lines in which HBK3 (HBK3-A) was down-regulated had reduced ability to produce immature somatic embryos from PEMs and were not able to complete the maturation processes. To assess the function of HBK3 in comparison with that of angiosperm KNOX genes, this gene was ectopically expressed in Arabidopsis plants. As observed for spruce, Arabidopsis embryos overexpressing HBK3 had enlarged meristems and enlarged expression pattern of SHOOTMERISTEMLESS, a SAM molecular marker gene. In addition, transformed embryos were able to germinate at a higher rate and the resulting plants showed a variety of phenotypic aberrations, including abnormal leaves and reduced apical dominance. Overall, these data confirm the importance of KNOTTED genes during development and reveal the participation of HBK3 in conifer embryogeny. Furthermore, the results show redundant functions of this gene during embryonic growth of spruce and Arabidopsis, but not during post-embryonic growth.  相似文献   
175.
Bacillus licheniformis, B. subtilis, B. cereus, Bacillus pumilus and Exiguobacterium sp., which were resistant up to 20 mg Na2SeO3/ml in nutrient broth and 40 mg/ml on nutrient agar plates, were isolated from contaminated soil and water. They grew from 25 to 45°C and pH 5 to 9. They had multiple metal and antibiotic resistances. All strains reduced selenite (SeIV) to elemental selenium (Se0) aerobically with a maximum reduction of 97% by B. pumilus after 144 h with Na2SeO3 at 500 μg/ml.  相似文献   
176.
Cancer is a multi‐faceted disease comprised of a combination of genetic, epigenetic, metabolic and signalling aberrations which severely disrupt the normal homoeostasis of cell growth and death. Rational developments of highly selective drugs which specifically block only one of the signalling pathways have been associated with limited therapeutic success. Multi‐targeted prevention of cancer has emerged as a new paradigm for effective anti‐cancer treatment. Platycodin D, a triterpenoid saponin, is one the major active components of the roots of Platycodon grandiflorum and possesses multiple biological and pharmacological properties including, anti‐nociceptive, anti‐atherosclerosis, antiviral, anti‐inflammatory, anti‐obesity, immunoregulatory, hepatoprotective and anti‐tumour activities. Recently, the anti‐cancer activity of platycodin D has been extensively studied. The purpose of this review was to give our perspectives on the current status of platycodin D and discuss its anti‐cancer activity and molecular mechanisms which may help the further design and conduct of pre‐clinical and clinical trials to develop it successfully into a potential lead drug for oncological therapy. Platycodin D has been shown to fight cancer by inducing apoptosis, cell cycle arrest, and autophagy and inhibiting angiogenesis, invasion and metastasis by targeting multiple signalling pathways which are frequently deregulated in cancers suggesting that this multi‐target activity rather than a single effect may play an important role in developing platycodin D into potential anti‐cancer drug.  相似文献   
177.
178.
Six-months-old, uniform sized seedlings of two citrus rootstocks; Cleopatra mandarin (Citrus reshni Hort. ex Tan) and Troyer citrange (Poncirus trifoliata × Citrus sinensis) were irrigated with half-strength Hoagland nutrient solution containing 0, 40 or 80 mM NaCl for 12 weeks. Shoot height, leaf number and fresh weights of the seedlings, and relative chlorophyll contents, chlorophyll fluorescence yields (Fv/Fm), net photosynthetic and respiration rates in the leaves decreased with the increase in salinity level in the irrigation water. The decrease was greater in Troyer citrange as compared to Cleopatra mandarin. The concentrations of sugars i.e. fructose, glucose and sucrose in the leaves of Cleopatra mandarin and both leaves and roots of Troyer citrange decreased with the increase in salinity level. However, the concentrations in the roots of Cleopatra mandarin increased with the increase in salinity level. Free proline content in the leaves of Troyer citrange and root tissue of Cleopatra mandarin also increased with the increased salinity level. Among the polyamines, spermine titer increased in the leaves of both rootstocks as a response to salinity treatments. Na+ concentrations were higher in leaf and root tissue of Cleopatra mandarin, while that of Cl were higher in Troyer citrange.  相似文献   
179.
Accurate identification of Populus clones and cultivars is essential for effective selection, breeding, and genetic resource management programs. The unit of cultivation and breeding in poplars is a clone, and individual cultivars are normally represented by a single clone. Microsatellite DNA markers of 10 simple sequence repeat loci were used for genetic fingerprinting and differentiation of 96 clones/cultivars and varieties belonging to six Populus species (P. deltoides, P. nigra, P. balsamifera, P. trichocarpa, P. grandidentata, and P maximowiczii) from three sections of the genus. All 96 clones/cultivars could be uniquely fingerprinted based on their single- or multilocus microsatellite genotypes. The five P. grandidentata clones could be differentiated based on their single-locus genotypes, while six clones of P. trichocarpa and 11 clones of P. maximowiczii could be identified by their two-locus genotypes. Twenty clones of P. deltoides and 25 clones of P. nigra could be differentiated by their multilocus genotypes employing three loci, and 29 clones of P. balsamifera required the use of multilocus genotypes at five loci for their genetic fingerprinting and differentiation. The loci PTR3, PTR5, and PTR7 were found to be the most informative for genetic fingerprinting and differentiation of the clones. The mean number of alleles per locus ranged from 2.9 in P. trichocarpa or P. grandidentata to 6.0 in P. balsamifera and 11.2 in 96 clones of the six species. The mean number of observed genotypes per locus ranged from 2.4 in P. grandidentata to 7.4 in P. balsamifera and 19.6 in 96 clones of the six species. The mean number of unique genotypes per locus ranged from 1.3 in P. grandidentata to 3.9 in P. deltoides and 8.8 in 96 clones of the six species. The power of discrimination of the microsatellite DNA markers in the 96 clones ranged from 0.726 for PTR4 to 0.939 for PTR7, with a mean of 0.832 over the 10 simple sequence repeat loci. Clones/cultivars from the same species showed higher microsatellite DNA similarities than the clones from the different species. A UPGMA cluster plot constructed from the microsatellite genotypic similarities separated the 96 clones into six major groups corresponding to their species. Populus nigra var. italica clones were genetically differentiated from the P. nigra var. nigra clones. Microsatellite DNA markers could be useful in genetic fingerprinting, identification, classification, certification, and registration of clones, clultivars, and varieties as well as genetic resource management and protection of plant breeders' rights in Populus.  相似文献   
180.
Sedentary plant‐parasitic cyst nematodes are obligate biotrophs that infect the roots of their host plant. Their parasitism is based on the modification of root cells to form a hypermetabolic syncytium from which the nematodes draw their nutrients. The aim of this study was to identify nematode susceptibility genes in Arabidopsis thaliana and to characterize their roles in supporting the parasitism of Heterodera schachtii. By selecting genes that were most strongly upregulated in response to cyst nematode infection, we identified HIPP27 (HEAVY METAL‐ASSOCIATED ISOPRENYLATED PLANT PROTEIN 27) as a host susceptibility factor required for beet cyst nematode infection and development. Detailed expression analysis revealed that HIPP27 is a cytoplasmic protein and that HIPP27 is strongly expressed in leaves, young roots and nematode‐induced syncytia. Loss‐of‐function Arabidopsis hipp27 mutants exhibited severely reduced susceptibility to H. schachtii and abnormal starch accumulation in syncytial and peridermal plastids. Our results suggest that HIPP27 is a susceptibility gene in Arabidopsis whose loss of function reduces plant susceptibility to cyst nematode infection without increasing the susceptibility to other pathogens or negatively affecting the plant phenotype.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号