首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4227篇
  免费   198篇
  国内免费   28篇
  2024年   9篇
  2023年   78篇
  2022年   194篇
  2021年   339篇
  2020年   165篇
  2019年   192篇
  2018年   263篇
  2017年   164篇
  2016年   235篇
  2015年   303篇
  2014年   321篇
  2013年   339篇
  2012年   335篇
  2011年   289篇
  2010年   180篇
  2009年   162篇
  2008年   169篇
  2007年   146篇
  2006年   105篇
  2005年   102篇
  2004年   69篇
  2003年   68篇
  2002年   40篇
  2001年   13篇
  2000年   9篇
  1999年   11篇
  1998年   12篇
  1997年   8篇
  1996年   11篇
  1995年   10篇
  1994年   7篇
  1993年   9篇
  1992年   13篇
  1991年   12篇
  1990年   7篇
  1989年   10篇
  1988年   5篇
  1987年   8篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1982年   6篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1974年   4篇
  1971年   2篇
  1968年   2篇
排序方式: 共有4453条查询结果,搜索用时 31 毫秒
221.
Biological Invasions - What kind of genetic structure helps the rapid range expansion of the invasive species is fundamental to understand spread of invasion. The House crow (Corvus splendens), an...  相似文献   
222.
In Vitro Cellular & Developmental Biology - Plant - Plants that produce bioactive chemicals provide a viable in vitro method for producing key nutraceutical substances, especially in the...  相似文献   
223.
The epithelial cell adhesion molecule (EpCAM) is a Type I transmembrane superficial glycoprotein antigen that is expressed on the surface of basolateral membrane of multiple epithelial cells with some exceptions such as epidermal keratinocytes, hepatocytes, thymic cortical epithelial cells, squamous stratified epithelial cells, and myoepithelial cells that do not express the molecule. The molecule plays a pivotal role in the structural integrity, adhesion of the epithelial tissues and their interaction with the underlying layers. EpCAM prevents claudin-7 and claudin-1 molecules from degradation, thereby, decreasing the number of tight junctions and cellular interconnections, and promoting the cells toward carcinogenic transformation. Moreover, the mutations in the EpCAM gene lead to congenital tufting enteropathy, severe intestinal epithelium homeostasis disorders, and Lynch and Lynch syndrome. Overexpression of EpCAM on stem cells of some cancers and the presence of this molecule on circulating tumor cells (CTCs) makes it a promising candidate for cancer diagnosis as well as tracing and isolation of CTCs.  相似文献   
224.
The hexose monophosphate (HMP) shunt acts as an essential component of cellular metabolism in maintaining carbon homeostasis. The HMP shunt comprises two phases viz. oxidative and nonoxidative, which provide different intermediates for the synthesis of biomolecules like nucleotides, DNA, RNA, amino acids, and so forth; reducing molecules for anabolism and detoxifying the reactive oxygen species during oxidative stress. The HMP shunt is significantly important in the liver, adipose tissue, erythrocytes, adrenal glands, lactating mammary glands and testes. We have researched the articles related to the HMP pathway, its metabolites and disorders related to its metabolic abnormalities. The literature for this paper was taken typically from a personal database, the Cochrane database of systemic reviews, PubMed publications, biochemistry textbooks, and electronic journals uptil date on the hexose monophosphate shunt. The HMP shunt is a tightly controlled metabolic pathway, which is also interconnected with other metabolic pathways in the body like glycolysis, gluconeogenesis, and glucuronic acid depending upon the metabolic needs of the body and depending upon the biochemical demand. The HMP shunt plays a significant role in NADPH2 formation and in pentose sugars that are biosynthetic precursors of nucleic acids and amino acids. Cells can be protected from highly reactive oxygen species by NADPH 2. Deficiency in the hexose monophosphate pathway is linked to numerous disorders. Furthermore, it was also reported that this metabolic pathway could act as a therapeutic target to treat different types of cancers, so treatments at the molecular level could be planned by limiting the synthesis of biomolecules required for proliferating cells provided by the HMP shunt, hence, more experiments still could be carried out to find additional discoveries.  相似文献   
225.
This study aimed to address the importance of glutamine synthetase II (GSII) during nitrogen assimilation in macroalga Gracilariopsis lemaneiformis. The cDNA full‐length sequence of the three glGSII genes was revealed to have the 5′ m7G cap, 5′‐untranslated region, open reading frame (ORF), 3′‐untranslated region, and a 3′ poly (A) tail. The three glGSIIs were classified into plastid glGS2 and cytosolic glGS1‐1 and glGS1‐2, having conserved GSII domains but different cDNA sequences. The complicated 5′ end flanking region indicates complex function of glGS genes. glGS1 genes were significantly up‐regulated under the different NH4+: NO3? ratio (i.e., 40:10, 25:25, 10:40, and 0:50) except glGS2 which dramatically up‐regulated under the low NH4+: NO3? ratio (i.e., 10:40 and 0:50) during different cultivation times. These different expression patterns perhaps are due to the different biological roles of GS1 and GS2 in the gene family. Furthermore, hypothetical working model of nitrogen assimilation pathway exhibiting the role of glGS1 and glGS2 is proposed. Finally, glGS2 was expressed in Escherichia coli BL21 (DE3), and the optimal conditions for culture (15°C, overnight), purification (500 mM imidazole washing), and activity (pH 7.4, 37°C) were established. This study lays a very important foundation for exploring the role of GS in nitrogen assimilation in algae and plants.  相似文献   
226.
227.
Plant and Soil - Abiotic stresses are threatening wheat productivity across the globe, which is often associated with nutrient deficiencies. Zinc (Zn) is involved in many physiological processes of...  相似文献   
228.
Molecular and Cellular Biochemistry - The protective activity of N-(2-hydroxyphenyl)acetamide (NA-2) and NA-2-coated gold nanoparticles (NA-2-AuNPs) in glycerol-treated model of acute kidney injury...  相似文献   
229.

The phytotoxic effects of two allelochemicals (trans-cinnamic acid and syringaldehyde) at different concentrations (1000, 100, 10, and 1 µM) on seed germination, seedling growth, and physiological and biochemical changes of Echinochloa crus-galli L. were tested by comparison to a commercial herbicide ‘Nominee’ (that is, 100 g/L bispyribac-sodium). trans-Cinnamic acid and the herbicide inhibited seed germination completely at 100 µM, whereas for syringaldehyde, complete inhibition required 1000 µM. However, with 100 µM syringaldehyde, the seed germination of the test species was 53% of the control. Allelochemicals and the herbicide delayed seed germination and significantly affected the speed of germination index (S), speed of cumulative germination index (AS), and coefficient of germination rate (CRG). The roots were more affected when nutrients were not added to the growth bioassay. In general, with the increasing concentration of allelochemicals from 100 to 1000 µM, the inhibitory effects increased. Via microscopy analysis, we found leaf blade wilting and necrosis at concentrations above 100 µM in allelochemical-treated plants. Roots of E. crus-galli treated with 1000 µM allelochemicals had black points on root nodes but had no root hairs. The anatomy of roots treated with allelochemicals (1000 µM) showed contraction or reduction of root pith cells as well as fewer and larger vacuoles compared to the control. The allelochemicals also showed remarkable effects on seedling growth, SPAD index, chlorophyll content, and free proline content in a pot culture bioassay, indicating that trans-cinnamic acid and syringaldehyde are potent inhibitors of E. crus-galli growth and can be developed as herbicides for future weed management strategies.

  相似文献   
230.
Eicosanoids are crucial downstream signals in the insect immune responses. Phospholipase A2 (PLA2) catalyzes phospholipids, the initial step in eicosanoid biosynthesis. In mammals, the biological roles of Ca2+-independent Phospholipase A2 (iPLA2) have been extensively studied; however, only a few studies have attempted to explore iPLA2 functions in insects. In this study, we identified two iPLA2 genes (designated as BmiPLA2A and BmiPLA2B) in the silkworm, Bombyx mori. BmiPLA2A had a 2427 base pair (bp) open reading frame (ORF) that coded for a protein with 808 amino acids. In contrast, BmiPLA2B had a 1731 bp ORF that coded for a protein with 576 amino acids. Domain analysis revealed that BmiPLA2A had six ankyrin repeat domains, but BmiPLA2B lacks these domains. BmiPLA2A and BmiPLA2B were transcribed widely in various tissues and developmental stages with different expression patterns. The administration of 20-hydroxyecdysone increased their expression levels in the epidermis and hemocytes. Furthermore, challenged with virus, fungus, Gram-negative bacteria, and Gram-positive bacteria induced the expression of BmiPLA2A and BmiPLA2B with variable degrees along with different time points. Our findings imply that BmiPLA2A and BmiPLA2B may have important biological roles in the development and innate immunity of B. mori.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号