首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   2篇
  23篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2014年   3篇
  2013年   1篇
  2011年   4篇
  2007年   2篇
  2006年   1篇
  2003年   1篇
  2002年   3篇
  1980年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
11.
Reversible tyrosine phosphorylation, catalyzed by receptor tyrosine kinases and receptor tyrosine phosphatases, plays an essential part in cell signaling during axonal development. Receptor protein tyrosine phosphatase-sigma has been implicated in the growth, guidance and repair of retinal axons. This phosphatase has also been implicated in motor axon growth and innervation. Insect orthologs of receptor protein tyrosine phosphatase-sigma are also implicated in the recognition of muscle target cells. A potential extracellular ligand for vertebrate receptor protein tyrosine phosphatase-sigma has been previously localized in developing skeletal muscle. The identity of this muscle ligand is currently unknown, but it appears to be unrelated to the heparan sulfate ligands of receptor protein tyrosine phosphatase-sigma. In this study, we have used affinity chromatography and tandem MS to identify nucleolin as a binding partner for receptor protein tyrosine phosphatase-sigma in skeletal muscle tissue. Nucleolin, both from tissue lysates and in purified form, binds to receptor protein tyrosine phosphatase-sigma ectodomains. Its expression pattern also overlaps with that of the receptor protein tyrosine phosphatase-sigma-binding partner previously localized in muscle, and nucleolin can also be found in retinal basement membranes. We demonstrate that a significant amount of muscle-associated nucleolin is present on the cell surface of developing myotubes, and that two nucleolin-binding components, lactoferrin and the HB-19 peptide, can block the interaction of receptor protein tyrosine phosphatase-sigma ectodomains with muscle and retinal basement membranes in tissue sections. These data suggest that muscle cell surface-associated nucleolin represents at least part of the muscle binding site for axonal receptor protein tyrosine phosphatase-sigma and that nucleolin may also be a necessary component of basement membrane binding sites of receptor protein tyrosine phosphatase-sigma.  相似文献   
12.
13.
14.
15.
Signaling through receptor protein tyrosine phosphatases (RPTPs) can influence diverse processes, including axon development, lymphocyte activation, and cell motility. The molecular regulation of these enzymes, however, is still poorly understood. In particular, it is not known if, or how, the dimerization state of RPTPs is related to the binding of extracellular ligands. Protein tyrosine phosphatase sigma (PTPsigma) is an RPTP with major isoforms that differ in their complements of fibronectin type III domains and in their ligand-binding specificities. In this study, we show that PTPsigma forms homodimers in the cell, interacting at least in part through the transmembrane region. Using this knowledge, we provide the first evidence that PTPsigma ectodomains must be presented as dimers in order to bind heterophilic ligands. We also provide evidence of how alternative use of fibronectin type III domain complements in two major isoforms of PTPsigma can alter the ligand binding specificities of PTPsigma ectodomains. The data suggest that the alternative domains function largely to change the rotational conformations of the amino-terminal ligand binding sites of the ectodomain dimers, thus imparting novel ligand binding properties. These findings have important implications for our understanding of how heterophilic ligands interact with, and potentially regulate, RPTPs.  相似文献   
16.
17.
The current myofibrillogenesis model is based mostly on in vitro cell cultures and on avian and mammalian embryos in situ. We followed the expression of actin, myosin, desmin, alpha-actinin, titin, and troponin using immunofluorescence microscopy of zebrafish (Danio rerio) embryos. We could see young mononucleated myoblasts with sharp striations. The striations were positive for all the sarcomeric proteins. Desmin distribution during muscle maturation changes from dispersed aggregates to a perinuclear concentration to striated afterwards. We could not observe desmin-positive, myofibrillar-proteins-negative cells, and we could not find any non-striated distribution of sarcomeric proteins, such as stress fiber-like structures. Some steps, like fusion before striation, seem to be different in the zebrafish when compared with the previously described myogenesis sequences.  相似文献   
18.
From 2006 to December 2009, 45 out of the 513 strains isolated from patients with invasive meningococcal disease in Belgium, were identified as Neisseria meningitidis serogroup B, non-serotypeable, subtype P1.14 (B:NT:P1.14). Most cases were geographically clustered in the northern part of the country. Multilocus Sequence Typing and antigen gene sequencing combined with Pulsed-Field Gel electrophoresis were used to investigate this cluster. Molecular typing showed that 39 out of these 45 N. meningitidis strains belonged to the clonal complex cc-269. The presence of the same PorA Variable Regions (VR1-VR2: 22, 14), the FetA allele (F5-1) and the highly similar Pulsed-Field Gel Electrophoresis profiles, supported genetic relatedness for 38 out of these 39 isolates. Retrospective analysis of B:NT:P1.22,14 isolates from 1999 onwards suggested that these strains belonging to the cc-269 complex, first emerged in the Belgian province of West-Flanders in 2004. This study showed that the combination of molecular tools with classical methods enabled reliable outbreak detection as well as a cluster identification.  相似文献   
19.
Neurotrophin receptors of the Trk family play a vital role in the survival of developing neurons and the process of axonogenesis. The Trk family are receptor protein tyrosine kinases (RTKs) and their signalling in response to neurotrophins is critically dependent upon their ability to transphosphorylate and act as signalling centres for multiple adaptor proteins and distinct, downstream pathways. Such phosphotyrosine signalling also depends upon the appropriate counter-regulation by phosphatases. A large family of receptor-like protein tyrosine phosphatases (RPTPs) are also expressed in developing neurons and in this study we have examined the ability of the phosphatase PTPsigma to interact with and regulate Trk proteins in transfected HEK 293T cells. PTPsigma can bind differentially to Trk proteins, binding stably in complexes with TrkA and TrkC, but not TrkB. The transmembrane domains of PTPsigma and TrkA appear to be sufficient for the direct or indirect interaction between these two receptors. Furthermore, PTPsigma is shown to dephosphorylate all three Trk receptors and suppress their phosphorylation in the presence of neurotrophins. In addition, overexpression of PTPsigma in primary sensory neurons in culture inhibits neurite outgrowth without affecting the short-term survival of these neurons. PTPsigma can thus show differential complex formation with different Trk family members and in neurons can selectively target the neurite-forming signalling pathway driven by TrkA.  相似文献   
20.
The susceptibility of different populations to SARS-CoV-2 infection is not yet understood. Here, we combined ACE2 coding variants' analysis in different populations and computational chemistry calculations to probe the effects on SARS-CoV-2/ACE2 interaction. ACE2-K26R; which is most frequent in Ashkenazi Jewish population decreased the SARS-CoV-2/ACE2 electrostatic attraction. On the contrary, ACE2-I468V, R219C, K341R, D206G, G211R increased the electrostatic attraction; ordered by binding strength from weakest to strongest. The aforementioned variants are most frequent in East Asian, South Asian, African and African American, European, European and South Asian populations, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号