首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3135篇
  免费   335篇
  国内免费   4篇
  3474篇
  2022年   25篇
  2021年   57篇
  2020年   34篇
  2019年   32篇
  2018年   40篇
  2017年   55篇
  2016年   69篇
  2015年   110篇
  2014年   141篇
  2013年   189篇
  2012年   221篇
  2011年   237篇
  2010年   151篇
  2009年   128篇
  2008年   183篇
  2007年   209篇
  2006年   186篇
  2005年   197篇
  2004年   168篇
  2003年   185篇
  2002年   170篇
  2001年   45篇
  2000年   27篇
  1999年   46篇
  1998年   45篇
  1997年   39篇
  1996年   34篇
  1995年   36篇
  1994年   36篇
  1993年   22篇
  1992年   27篇
  1991年   20篇
  1990年   18篇
  1989年   25篇
  1988年   19篇
  1987年   13篇
  1986年   11篇
  1985年   11篇
  1984年   20篇
  1982年   16篇
  1981年   16篇
  1980年   11篇
  1979年   18篇
  1978年   15篇
  1976年   15篇
  1974年   10篇
  1973年   11篇
  1972年   9篇
  1970年   10篇
  1969年   9篇
排序方式: 共有3474条查询结果,搜索用时 0 毫秒
71.
In completely insular microbial communities, evolution of community structure cannot be shaped by the immigration of new members. In addition, when those communities are run in steady state, the influence of environmental factors on their assembly is reduced. Therefore, one would expect similar community structures under steady-state conditions. Yet, in parallel setups, variability does occur. To reveal ecological mechanisms behind this phenomenon, five parallel reactors were studied at the single-cell level for about 100 generations and community structure variations were quantified by ecological measures. Whether community variability can be controlled was tested by implementing soft temperature stressors as potential synchronizers. The low slope of the lognormal rank-order abundance curves indicated a predominance of neutral mechanisms, i.e., where species identity plays no role. Variations in abundance ranks of subcommunities and increase in inter-community pairwise β-diversity over time support this. Niche differentiation was also observed, as indicated by steeper geometric-like rank-order abundance curves and increased numbers of correlations between abiotic and biotic parameters during initial adaptation and after disturbances. Still, neutral forces dominated community assembly. Our findings suggest that complex microbial communities in insular steady-state environments can be difficult to synchronize and maintained in their original or desired structure, as they are non-equilibrium systems.  相似文献   
72.
73.
Volker Lammert 《Zoomorphology》1985,105(5):308-316
Summary The fine structure of the protonephridia of Haplognathia rosea (Filospermoidea) and Gnathostomula paradoxa (Bursovaginoidea) is described. Each protonephridium consists of three different cells: (1) a monociliated terminal cell which constitutes the filtration area, (2) a nonciliated canal cell showing a special protonephridial outlet system, and (3) an intraepidermal cell — the nephroporus cell — constituting the nephroporus. The protonephridia are arranged serially. There is no canal system connecting the protonephridial units.Protonephridial characters in other Bilateria are considered. The pattern of characters in the protonephridia in the last common gnathostomulid stem species and presumed apomorphies in the protonephridia of the Gnathostomulida investigated are discussed.Abbreviations used in figures ac acessory centriole - AC additional epidermal cell - bb basal body - bl basal lamina - bm bundle of microvilli - c cilium - cc cilium duct cell - cd cilium duct - cr ciliary rootlet - crs structures resembling ciliary rootlets - di diplosome - ds desmosome - dy dictyosome - f filtration area - g granules - m mitochondrium - mv microvillus - n nucleus - NC nephroporus cell - np nephroporus - oc outlet canal - TC terminal cell - tl tubules of lacunar system  相似文献   
74.
The IFNL4 gene is a recently discovered type III interferon, which in a significant fraction of the human population harbours a frameshift mutation abolishing the IFNλ4 ORF. The expression of IFNλ4 is correlated with both poor spontaneous clearance of hepatitis C virus (HCV) and poor response to treatment with type I interferon. Here, we show that the IFNL4 gene encodes an active type III interferon, named IFNλ4, which signals through the IFNλR1 and IL‐10R2 receptor chains. Recombinant IFNλ4 is antiviral against both HCV and coronaviruses at levels comparable to IFNλ3. However, the secretion of IFNλ4 is impaired compared to that of IFNλ3, and this impairment is not due to a weak signal peptide, which was previously believed. We found that IFNλ4 gets N‐linked glycosylated and that this glycosylation is required for secretion. Nevertheless, this glycosylation is not required for activity. Together, these findings result in the paradox that IFNλ4 is strongly antiviral but a disadvantage during HCV infection.  相似文献   
75.
Biological membranes are organized into dynamic microdomains that serve as sites for signal transduction and membrane trafficking. The formation and expansion of these microdomains are driven by intrinsic properties of membrane lipids and integral as well as membrane-associated proteins. Annexin A2 (AnxA2) is a peripherally associated membrane protein that can support microdomain formation in a Ca2+-dependent manner and has been implicated in membrane transport processes. Here, we performed a quantitative analysis of the binding of AnxA2 to solid supported membranes containing the annexin binding lipids phosphatidylinositol-4,5-bisphosphate and phosphatidylserine in different compositions. We show that the binding is of high specificity and affinity with dissociation constants ranging between 22.1 and 32.2 nM. We also analyzed binding parameters of a heterotetrameric complex of AnxA2 with its S100A10 protein ligand and show that this complex has a higher affinity for the same membranes with Kd values of 12 to 16.4 nM. Interestingly, binding of the monomeric AnxA2 and the AnxA2-S100A10 complex are characterized by positive cooperativity. This cooperative binding is mediated by the conserved C-terminal annexin core domain of the protein and requires the presence of cholesterol. Together our results reveal for the first time, to our knowledge, that AnxA2 and its derivatives bind cooperatively to membranes containing cholesterol, phosphatidylserine, and/or phosphatidylinositol-4,5-bisphosphate, thus providing a mechanistic model for the lipid clustering activity of AnxA2.  相似文献   
76.
77.
78.
Isocitrate dehydrogenase 1 (IDH1) decarboxylates isocitrate to α-ketoglutarate (α-KG) leading to generation of NADPH, which is required to regenerate reduced glutathione (GSH), the major cellular ROS scavenger. Mutation of R132 of IDH1 abrogates generation of α-KG and leads to conversion of α-KG to 2-hydroxyglutarate. We hypothesized that glioma cells expressing mutant IDH1 have a diminished antioxidative capacity and therefore may encounter an ensuing loss of cytoprotection under conditions of oxidative stress. Our study was performed with LN229 cells stably overexpressing IDH1 R132H and wild type IDH1 or with a lentiviral IDH1 knockdown. Quantification of GSH under basal conditions and following treatment with the glutathione reductase inhibitor BCNU revealed significantly lower GSH levels in IDH1 R132H expressing cells and IDH1 KD cells compared to their respective controls. FACS analysis of cell death and ROS production also demonstrated an increased sensitivity of IDH1-R132H-expressing cells and IDH1 KD cells to BCNU, but not to temozolomide. The sensitivity of IDH1-R132H-expressing cells and IDH1 KD cells to ROS induction and cell death was further enhanced with the transaminase inhibitor aminooxyacetic acid and under glutamine free conditions, indicating that these cells were more addicted to glutaminolysis. Increased sensitivity to BCNU-induced ROS production and cell death was confirmed in HEK293 cells inducibly expressing the IDH1 mutants R132H, R132C and R132L. Based on these findings we propose that in addition to its established pro-tumorigenic effects, mutant IDH1 may also limit the resistance of gliomas to specific death stimuli, therefore opening new perspectives for therapy.  相似文献   
79.
80.
Solution NMR studies of α-helical membrane proteins are often complicated by severe spectral crowding. In addition, hydrophobic environments like detergent micelles, isotropic bicelles or nanodiscs lead to considerably reduced molecular tumbling rates which translates into line-broadening and low sensitivity. Both difficulties can be addressed by selective isotope labeling methods. In this publication, we propose a combinatorial protocol that utilizes four different classes of labeled amino acids, in which the three backbone heteronuclei (amide nitrogen, α-carbon and carbonyl carbon) are enriched in 15N or 13C isotopes individually as well as simultaneously. This results in eight different combinations of dipeptides giving rise to cross peaks in 1H–15N correlated spectra. Their differentiation is achieved by recording a series of HN-detected 2D triple-resonance spectra. The utility of this new scheme is demonstrated with a homodimeric 142-residue membrane protein in DHPC micelles. Restricting the number of selectively labeled samples to three allowed the identification of the amino-acid type for 77 % and provided sequential information for 47 % of its residues. This enabled us to complete the backbone resonance assignment of the uniformly labeled protein merely with the help of a 3D HNCA spectrum, which can be collected with reasonable sensitivity even for relatively large, non-deuterated proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号