首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2316篇
  免费   262篇
  2578篇
  2022年   16篇
  2021年   26篇
  2020年   21篇
  2019年   19篇
  2018年   31篇
  2017年   28篇
  2016年   65篇
  2015年   112篇
  2014年   113篇
  2013年   126篇
  2012年   152篇
  2011年   146篇
  2010年   119篇
  2009年   60篇
  2008年   110篇
  2007年   115篇
  2006年   116篇
  2005年   88篇
  2004年   100篇
  2003年   71篇
  2002年   70篇
  2001年   54篇
  2000年   79篇
  1999年   61篇
  1998年   26篇
  1997年   21篇
  1996年   22篇
  1995年   13篇
  1994年   15篇
  1993年   27篇
  1992年   31篇
  1991年   33篇
  1990年   35篇
  1989年   25篇
  1988年   26篇
  1987年   19篇
  1986年   19篇
  1985年   19篇
  1984年   26篇
  1983年   24篇
  1982年   18篇
  1981年   18篇
  1979年   16篇
  1978年   15篇
  1977年   19篇
  1974年   16篇
  1973年   21篇
  1972年   16篇
  1969年   21篇
  1968年   12篇
排序方式: 共有2578条查询结果,搜索用时 15 毫秒
11.
The third and fourth AUG codons in GCN4 mRNA efficiently repress translation of the GCN4-coding sequences under normal growth conditions. The first AUG codon is approximately 30-fold less inhibitory and is required under amino acid starvation conditions to override the repressing effects of AUG codons 3 and 4. lacZ fusions constructed to functional, elongated versions of the first and fourth upstream open reading frames (URFs) were used to show that AUG codons 1 and 4 function similarly as efficient translational start sites in vivo, raising the possibility that steps following initiation distinguish the regulatory properties of URFs 1 and 4. In accord with this idea, we observed different consequences of changing the length and termination site of URF1 versus changing those of URFs 3 and 4. The latter were lengthened considerably, with little or no effect on regulation. In fact, the function of URFs 3 and 4 was partially reconstituted with a completely heterologous URF. By contrast, certain mutations that lengthen URF1 impaired its positive regulatory function nearly as much as removing its AUG codon did. The same mutations also made URF1 a much more inhibitory element when it was present alone in the mRNA leader. These results strongly suggest that URFs 1 and 4 both function in regulation as translated coding sequences. To account for the phenotypes of the URF1 mutations, we suggest the most ribosomes normally translate URF1 and that the mutations reduce the number of ribosomes that are able to complete URF1 translation and resume scanning downstream. This effect would impair URF1 positive regulatory function if ribosomes must first translate URF1 in order to overcome the strong translational block at the 3'-proximal URFs. Because URF1-lacZ fusions were translated at the same rate under repressing and derepressing conditions, it appears that modulating initiation at URF1 is not the means that is used to restrict the regulatory consequences of URF1 translation to starvation conditions.  相似文献   
12.
A key intermediate, (3R-cis)-1,3,4,5-tetrahydro-3-hydroxy-4-(4-methoxyphenyl)-6-(trifluorome thyl)- 2H-1-benzazepin-2-one (compound II or SQ32191), with high optical purity was made by the stereoselective microbial reduction of the parent ketone 1. Several strains of bacterial and yeast cultures were screened for the ability to catalyse the stereoselective reduction of 4,5-dihydro-4-(4-methoxyphenyl)-6-(trifluoromethyl)-1H-1-benzazepin++ +-2,3-dione [compound I or SQ32425]. Microorganisms from the genera Nocardia, Rhodococcus, Alkaligenes, Corynebacterium, Arthrobacter, Hansenula, and Candida reduced compound I to compound II with 60-70% conversion yield. In contrast, microorganisms from the genera Pseudomonas and Acinetobacter reduced compound I stereospecifically to (trans)-1,3,4,5-tetrahydro-3-hydroxy-4-(4-methoxyphenyl)-6-(trifluoromet hyl-2H- 1-benzazepin-2-one (compound III or SQ32408). Among various cultures evaluated, N. salmonicolor SC6310 effectively catalysed the transformation of compound I to compound II with 96% conversion yield at 1.5-2.0 gl-1 concentration. Compound II was isolated and identified by NMR analysis, mass spectrometry, and comparison to an authentic sample. Preparative scale fermentation process and transformation process were developed using cell suspensions of N. salmonicolor SC6310 to catalyse the transformation of compound I to compound II. The isolated compound II had a melting point of 222 degrees C (reference 221-223 degrees C), optical rotation of +130.4 (reference +128 degrees C), and optical purity of greater than 99.9% as analyzed by NMR and chiral HPLC.  相似文献   
13.
14.
Solid-state NMR studies of the dynamics of a synthetic hydrophobic peptide, tert-butyloxycarbonylleucylphenylalanine methyl ester (Boc-Leu-Phe-OMe), in phospholipid bilayers are described. Motionally averaged powder pattern line shapes from 2H- and 15N-labeled backbone and side-chain sites of the peptide in phospholipid bilayers demonstrate the presence of both overall and internal reorientations of substantial amplitude. The peptide motions are shown to be strongly influenced by the motions of the lipids.  相似文献   
15.
Erythropoietin (EP) controls the terminal phase of differentiation in which proerythroblasts and their precursors, the colony forming units-erythroid (CFU-e), develop into erythrocytes. Biochemical studies of this hormone-directed terminal differentiation have been hindered by the lack of a homogeneous population of erythroid cells at the developmental stages of CFU-e and proerythroblasts that will synchronously differentiate in response to EP. Such a population of cells can be prepared from the spleens of mice with the acute erythroblastosis resulting from infection with anemia-inducing Friend virus (FVA). Using these FVA-infected erythroid cells, which were induced to differentiate with EP, four proteins other than hemoglobin that have key functions in mature erythrocytes were monitored during the 48-hour period of terminal differentiation. Synthesis of spectrin and membrane band 3 proteins were determined by immunoprecipitation and SDS-polyacrylamide gel electrophoresis; accumulation of the cytoskeletal protein band 4.1 was monitored by immunoblotting; carbonic anhydrase activity was measured electrometrically. Band 3 synthesis and band 4.1 accumulation could be detected only after exposure of the cells to EP. Spectrin synthesis was ongoing prior to culture with EP, but it did increase after exposure to the hormone. Carbonic anhydrase-specific activity changed very little throughout the terminal differentiation process. These results reveal at least three patterns of production of principal erythrocyte proteins during EP-mediated terminal differentiation of FVA-infected erythroid cells. Depending on the specific protein examined, de novo synthesis can be induced by EP, an ongoing production can be enhanced by EP, or the production of a protein can be completed at a developmental stage prior to EP-mediated differentiation in these cells.  相似文献   
16.
Summary The presence of phenylacetic acid (PAA) in an anaerobic swine manure digester was determined by gas chromatography of the butyl ester and confirmed by mass spectroscopy. PAA concentration increased during start-up of a digester and with low carbon, high nitrogen loading. Unlike acetate, propionate and butyrate, the concentration of PAA varied little through the day in a stable digester loaded once per day. The laboratory scale digester was loaded at 4 g of swine manure solids/liter digester volume per day. The retention time and temperature were 15 days and 37°C. PAA is a microbial intermediate which is produced by one group of anaerobic bacteria and converted to methane by other members of the bacterial community in the digester. As such, it may be a useful indicator of the relative metabolic activity of the bacterial groups and thus of the overall stability of the anaerobic process.  相似文献   
17.
H1 phosphorylation has been studied through the precise nuclear division cycle of Physarum polycephalum. The number of sites of phosphorylation of Physarum H1 is very much larger than the number of sites reported for mammalian H1 molecules which is consistent with the larger molecular weight of Physarum H1. At metaphase all of the Physarum H1 molecules contain 20-24 phosphates. Immediately following metaphase, these metaphase-phosphorylated H1 molecules undergo rapid dephosphorylation to give an intermediate S phase set of phosphorylated H1 molecules containing 9-16 phosphates. Progressing into S phase newly synthesized H1 is phosphorylated and eventually merges with the old dephosphorylated H1 to give a ladder of bands 1-20. By the end of S phase or early G2 phase, there is a ladder of bands 1-16 all of which undergo phosphate turnover. Further into G2 phase the bands move to higher states of phosphorylation, and by prophase all of the H1 molecules contain 15-24 phosphates which increases to 20-24 phosphates at metaphase. These results support the proposals that H1 phosphorylation is an important factor in the process of chromosome condensation through G2 phase, prophase to metaphase.  相似文献   
18.
We have obtained monthly samples of two species, Drosophila pseudoobscura and Drosophila persimilis, in a natural population from Napa County, California. In each species, about 300 genes have been assayed by electrophoresis for each of seven enzyme loci in each monthly sample from March 1972 to June 1975. Using statistical methods developed for the purpose, we have examined whether the allele frequencies at different loci vary in a correlated fashion. The methods used do not detect natural selection when it is deterministic (e.g., overdominance or directional selection), but only when alleles at different loci vary simultaneously in response to the same environmental variations. Moreover, only relatively large fitness differences (of the order of 15%) are detectable. We have found strong evidence of correlated allele frequency variation in 13-20% of the cases examined. We interpret this as evidence that natural selection plays a major role in the evolution of protein polymorphisms in nature.  相似文献   
19.
Glucocorticoid control of pituitary beta-endorphin (beta-END) release was investigated in vitro and in vivo. Cultured cells of both rat anterior (AL) and neurointermediate (NIL) lobe released beta-END-like immunoreactivity (beta-END-LI) in response to epinephrine (10(-7) M); however, only the response of AL cells was prevented by corticosterone (10(-8)-10(-6) M) or dexamethasone (10(-9)-10(-7) M). Gel chromatographic analysis (Sephadex G-50) revealed that the major forms of beta-END-LI released by AL cells corresponded to beta-END and beta-lipotropin (beta-LPH) in molecular size, whereas virtually all of the immunoreactivity released by NIL cells resembled beta-END. In vivo administration of dexamethasone attenuated the stress-induced release of beta-END-LI in a dose- and time-related fashion, having a more pronounced effect on plasma levels of beta-END-LI corresponding to beta-LPH in molecular size. Metyrapone (100 mg/kg), an inhibitor of glucocorticoid synthesis, evoked a rapid (20-40 min) four- to sixfold increase in total plasma beta-END-LI and 75% of this rise was due to immunoreactivity resembling beta-LPH in size. This response was diminished by coadministration of either dexamethasone (0.05-1.25 mg/kg) or corticosterone (0.05-1.25 mg/kg) and completely prevented by 4-hr pretreatment with dexamethasone (50 micrograms/kg). The briskness of the plasma beta-END-LI response to acute changes in glucocorticoid status suggests that a "rapid" feedback mechanism operates in the physiologic control of pituitary beta-END-LI secretion. Moreover, the ability of glucocorticoids to selectively inhibit AL release of beta-END-LI in vitro and their pronounced effect on plasma levels of beta-END-LI resembling beta-LPH, a marker of AL secretion, together indicate that glucocorticoids exert a selective influence over the secretion of AL corticotrophs in vivo. This demonstration of differential regulation of the AL versus IL secretion of beta-END-LI in vivo most likely reflects a phenomena having biologic importance related to the different physiologic actions of the several molecular forms of beta-END-LI secreted by the two tissues.  相似文献   
20.
Antibody probes of Western blots [Renart, J., Reiser, J., & Stark, G. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 3116] of chicken liver homogenates under various conditions revealed that glycinamide ribonucleotide transformylase can be rapidly proteolyzed in such homogenates. These findings, along with molecular weight measurements by ultracentrifugation, identify the true form of glycinamide ribonucleotide transformylase as a monomeric protein of 117000 daltons. This protein has been purified 400-fold in 44% yield from chicken liver in one step on an affinity column of 10-formyl-5,8-dideazafolate-Sepharose. Native glycinamide ribonucleotide transformylase retains full activity after proteolytic cleavage to a form (Mr 55000) similar to fragments seen in the Western blot of the homogenates. This phenomenon may be responsible for the previous identification of glycinamide ribonucleotide (GAR) transformylase as a dimer of 55000-dalton subunits. Similar analyses using antibodies to 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase [Mueller, W. T., & Benkovic, S. J. (1981) Biochemistry 20, 337] and trifunctional enzyme [Smith, G. K., Mueller, W. T., Wasserman, G. F., Taylor, W. D., & Benkovic, S. J. (1980) Biochemistry 19, 4313] confirm that these two proteins were isolated in their native forms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号