首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2673篇
  免费   300篇
  国内免费   198篇
  3171篇
  2022年   28篇
  2021年   48篇
  2020年   33篇
  2019年   39篇
  2018年   41篇
  2017年   40篇
  2016年   79篇
  2015年   126篇
  2014年   127篇
  2013年   146篇
  2012年   199篇
  2011年   184篇
  2010年   154篇
  2009年   98篇
  2008年   141篇
  2007年   147篇
  2006年   136篇
  2005年   109篇
  2004年   118篇
  2003年   84篇
  2002年   96篇
  2001年   74篇
  2000年   90篇
  1999年   69篇
  1998年   35篇
  1997年   22篇
  1996年   22篇
  1995年   14篇
  1994年   23篇
  1993年   29篇
  1992年   37篇
  1991年   38篇
  1990年   37篇
  1989年   33篇
  1988年   27篇
  1987年   23篇
  1986年   21篇
  1985年   23篇
  1984年   28篇
  1983年   26篇
  1982年   21篇
  1981年   19篇
  1979年   18篇
  1978年   15篇
  1977年   19篇
  1974年   16篇
  1973年   22篇
  1972年   17篇
  1969年   21篇
  1968年   12篇
排序方式: 共有3171条查询结果,搜索用时 15 毫秒
81.
Permafrost‐affected soils of the northern circumpolar region represent 50% of the terrestrial soil organic carbon (SOC) reservoir and are most strongly affected by climatic change. There is growing concern that this vast SOC pool could transition from a net C sink to a source. But so far little is known on how the organic matter (OM) in permafrost soils will respond in a warming future, which is governed by OM composition and possible stabilization mechanisms. To investigate if and how SOC in the active layer and adjacent permafrost is protected against degradation, we employed density fractionation to separate differently stabilized SOM fractions. We studied the quantity and quality of OM in different compartments using elemental analysis, 13C solid‐phase nuclear magnetic resonance (13C‐NMR) spectroscopy, and 14C analyses. The soil samples were derived from 16 cores from drained thaw lake basins, ranging from 0 to 5500 years of age, representing a unique series of developing Arctic soils over time. The normalized SOC stocks ranged between 35.5 and 86.2 kg SOC m?3, with the major amount of SOC located in the active layers. The SOC stock is dominated by large amounts of particulate organic matter (POM), whereas mineral‐associated OM especially in older soils is of minor importance on a mass basis. We show that tremendous amounts of over 25 kg OC per square meter are stored as presumably easily degradable OM rich in carbohydrates. Only about 10 kg OC per square meter is present as presumably more stable, mineral‐associated OC. Significant amounts of the easily degradable, carbohydrate‐rich OM are preserved in the yet permanently frozen soil below the permafrost table. Forced by global warming, this vast labile OM pool could soon become available for microbial degradation due to the continuous deepening of the annually thawing active layer.  相似文献   
82.
The palaeoceanography of southern Australia has been characterized by fluctuating sea levels during glacial periods, changing temperature regimes and modified boundary currents. Previous studies on genetic structuring of species in southeastern Australia have focused mainly on the differentiation of eastern and western populations while the potential role of Bass Strait as a region of overlap for three biogeographic provinces (Peronia, Maugea, and Flindersia) has been largely ignored. This study aimed to explore the likely roles of historic and contemporary factors in determining divergence patterns in the habitat‐forming intertidal seaweed Hormosira banksii in southeastern Australia with a special focus on postglacial dispersal into Bass Strait. We examined the genetic diversity of 475 Hormosira specimens collected from 19 sites around southern Australia using DNA sequence analysis of cytochrome oxidase 1. Three major haplotype groups were identified (western, centre and eastern) corresponding with the three existing biogeographical provinces in this region. Historic break points appeared to be retained and reinforced by modern day dispersal barriers. Phylogeographic grouping of Hormosira reflected a combination of historic and contemporary oceanography. As western and eastern group haplotypes were largely absent within Bass Strait, re‐colonization after the last glacial maximum appeared to have originated from refuges within or near present day Bass Strait. Patterns of genetic structure for Hormosira are consistent with other marine species in this region and highlight the importance of biogeographical barriers in contributing to modern genetic structure.  相似文献   
83.
84.
85.
Do we have to bother about the isoprostane nomenclature? The widely accepted IUPAC isoprostane nomenclature provides an unambiguous and systematic terminology to name all theoretical possible isoprostanes. However, the currently accepted nomenclature system provides an unnatural framework which is not well suited to address certain biologically relevant questions. Artificial categorization of isoprostanoids into prostanoid families disrupts prostaglandin-ring core structures needed to describe biogenetic precursor–product relationships. In addition, the IUPAC system defines isoprostanoid families which comprise chemically heterogeneous isoprostanoids which largely differ in their physicochemical properties from those of the corresponding prostaglandins. As a result of this, alternative nomenclature systems such as the phytoprostane nomenclature system overcoming some inherent problems of the IUPAC nomenclature are still in use. However, different naming of isoprostanoids especially the classification of prostanoid family names has created considerable confusion. Therefore, a cautionary note on the current use of different nomenclature systems is necessary.  相似文献   
86.
Jasmonic acid and related oxylipins are controversially discussed to be involved in regulating the initiation and progression of leaf senescence. To this end, we analyzed profiles of free and esterified oxylipins during natural senescence and upon induction of senescence-like phenotypes by dark treatment and flotation on sorbitol in Arabidopsis (Arabidopsis thaliana). Jasmonic acid and free 12-oxo-phytodienoic acid increased during all three processes, with the strongest increase of jasmonic acid after dark treatment. Arabidopside content only increased considerably in response to sorbitol treatment. Monogalactosyldiacylglycerols and digalactosyldiacylglycerols decreased during these treatments and aging. Lipoxygenase 2-RNA interference (RNAi) plants were generated, which constitutively produce jasmonic acid and 12-oxo-phytodienoic acid but do not exhibit accumulation during natural senescence or upon stress treatment. Chlorophyll loss during aging and upon dark incubation was not altered, suggesting that these oxylipins are not involved in these processes. In contrast, lipoxygenase 2-RNAi lines and the allene oxid synthase-deficient mutant dde2 were less sensitive to sorbitol than the wild type, indicating that oxylipins contribute to the response to sorbitol stress.Senescence is an important, highly regulated process at the end of development. Senescence is characterized by breakdown of organelles and molecules, export and transport of these nutrients to other organs/parts of the organism, and finally programmed cell death of the senescing organ.The process of senescence has been intensively studied in leaves, and morphological as well as molecular changes in senescing leaves have been described. Yellowing as a consequence of chlorophyll and chloroplast degradation is the most obvious process during natural leaf senescence. In addition, gene expression changes dramatically during senescence. Some senescence-associated genes (SAG, SEN) have been reported that are induced during this process, and several of the encoded proteins function in macromolecule degradation, detoxification and defense metabolism, or signal transduction (Gepstein et al., 2003). Based on the degradation of chloroplasts and macromolecules, leaf metabolism changes from carbon assimilation to catabolism (Lim et al., 2007).The initiation and progression of senescence is regulated by endogenous as well as exogenous factors. Among the endogenous factors, the developmental status of the organ and of the whole plant (e.g. age and progress in flowering and seed production) has a great impact on the process of senescence. Different stress factors such as pathogen attack, drought, osmotic stress, heat, cold, ozone, UV light, and shading can induce or accelerate senescence (Quirino et al., 2000). Phytohormones are very important regulators that integrate information about the developmental status and the environmental factors. Cytokinins are antagonistic signals and delay senescence. Endogenous levels of cytokinins decrease during senescence, and exogenous application and transgenic approaches, enhancing endogenous levels of these compounds, lead to delayed senescence (Gan and Amasino, 1995). In contrast, the gaseous phytohormone ethylene is known to induce and accelerate senescence (John et al., 1995). There are also several indications that abscisic acid modulates senescence (van der Graaff et al., 2006). The roles of other phytohormones/signaling compounds such as auxin, salicylic acid, and jasmonates are less clear (Lim et al., 2007).Jasmonates are oxylipin signaling molecules derived from linolenic acid. The term jasmonates comprises 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA), and derivatives such as the methyl ester and amino acid conjugates of JA. One of the first biological activities described for these compounds was the promotion of senescence in oat (Avena sativa) leaves by methyl jasmonate (MeJa) isolated from Artemisia absinthium (Ueda and Kato, 1980). Later on, the induction of senescence-like phenotypes by exogenous application of MeJa was also found in other plant species (Ueda and Kato, 1980; Weidhase et al., 1987a; He et al., 2002). On the molecular level, this senescence-promoting effect of MeJa is accompanied by chlorophyll loss and decreases in Rubisco and photosynthesis (Weidhase et al., 1987a, 1987b). In addition, expression of some senescence-up-regulated genes is also responsive to JA; examples are SEN1, SEN4, SEN5, SAG12, SAG14, and SAG15 (Park et al., 1998; Schenk et al., 2000; He et al., 2002). Due to the results described above, jasmonates have been described for decades as compounds with senescence-promoting activities, while the function of these compounds in natural senescence in planta was critically discussed (Parthier, 1990; Sembdner and Parthier, 1993; Creelman and Mullet, 1997; Wasternack, 2007; Balbi and Devoto, 2008; Reinbothe et al., 2009). Additional indications for a role of jasmonates in regulating senescence are the transient up-regulation of expression of some enzymes involved in JA biosynthesis, such as allene oxide synthase (AOS) and OPDA reductase 3 (OPR3), and the increase in JA levels during natural senescence (He et al., 2002; van der Graaff et al., 2006). Furthermore, alterations in natural and induced senescence have been reported for some mutants with defects in the JA pathway. The mutant coi1, which is impaired in JA signaling, exhibited delayed chlorophyll loss upon dark incubation of detached leaves (Castillo and Leon, 2008). Plants with reduced expression of the 3-ketoacyl-CoA-thiolase KAT2, which is involved in β-oxidation and JA production, showed delayed yellowing during natural senescence and upon dark incubation of detached leaves (Castillo and Leon, 2008).However, there are also several reports that cast doubt on an important function of JA in senescence. For most mutants in JA biosynthesis or signaling, no differences in natural senescence are apparent (He et al., 2002; Schommer et al., 2008). In addition, mutants defective in the expression of AOS or OPR3 do not show altered senescence-like phenotypes upon dark treatment (Schommer et al., 2008; Kunz et al., 2009). It has to be taken into consideration that the knockout in these mutants has pleiotrophic effects during whole plant development. For example, the leaves of plants with reduced expression of the lipase DGL or of OPR3 are larger (Hyun et al., 2008). In addition, several knockout mutants defective in JA biosynthesis or signaling do not produce fertile flowers (Feys et al., 1994; McConn and Browse, 1996; Sanders et al., 2000; Stintzi and Browse, 2000; Ishiguro et al., 2001; von Malek et al., 2002). These changes in development might affect other developmental processes such as senescence.To investigate the function of jasmonates in senescence in more detail, we compared the oxylipin profile of wild-type leaves during natural senescence and upon stress induction of senescence-like phenotypes. The analysis of lipoxygenase 2 (LOX2)-RNA interference (RNAi) plants, which produce low basal levels of oxylipins but are impaired in the accumulation of OPDA and JA during senescence or in response to stress, indicates that 13-LOX products are not necessary for natural senescence or dark-induced chlorophyll loss but are involved in the response to sorbitol.  相似文献   
87.

Background

In hemodialysis patients, elevated plasma troponin concentrations are a common finding that has even increased with the advent of newly developed sensitive assays. However, the interpretation and relevance of this is still under debate.

Methods

In this cross-sectional study, we analyzed plasma concentrations of sensitive troponin I (TnI) and troponin T (TnT) in stable ambulatory hemodialysis patients (n = 239) and investigated their associations with clinical factors and mortality.

Results

In all of the enrolled patients, plasma TnI or TnT was detectable at a median concentration of 14 pg/ml (interquartile range: 7–29) using the Siemens TnI ultra assay and 49 pg/ml (31–74) using the Roche Elecsys high sensitive TnT assay. Markedly more patients exceeded the 99th percentile for TnT than for TnI (95% vs. 14%, p<0.0001). In a multivariate linear regression model, TnT was independently associated with age, gender, systolic dysfunction, time on dialysis, residual diuresis and systolic blood pressure, whereas TnI was independently associated with age, systolic dysfunction, pulse pressure, time on dialysis and duration of a HD session. During a follow-up period of nearly two years, TnT concentration above 38 pg/mL was associated with a 5-fold risk of death, whereas elevation of TnI had a gradual association to mortality.

Conclusion

In hemodialysis patients, elevations of plasma troponin concentrations are explained by cardiac function and dialysis-related parameters, which contribute to cardiac strain. Both are highly predictive of increased risk of death.  相似文献   
88.
A cohort of 36 unrelated German patients with craniosynostosis syndromes of the Crouzon and Pfeiffer type were analyzed for FGFR mutations. Mutations in FGFR2 were identified in 25 Crouzon and 5 Pfeiffer syndrome patients, whereas no sequence alterations were found in the remaining patients, even after screening of the relevant parts of FGFR1, FGFR3, and TWIST. Mutations in FGFR2 clustered at two critical cysteine residues, 278 and 342, which were involved in 18 of 30 cases (60%). These two mutational hot spots, therefore, are prime targets for an efficient mutation-screening strategy. The spectrum of mutations overlapped the two syndromes and thus reflected the phenotypic similarities observed in both patient groups. In 21 families, the origin of the mutation could be traced by analyzing parents and relatives. Eleven mutations arose de novo, indicating a high mutation rate for FGFR2. In the 10 familial cases, the clinical presentation varied considerably within the pedigree, but both syndromes "bred true," i.e., a Pfeiffer syndrome phenotype was never observed in a Crouzon syndrome family and vice versa.  相似文献   
89.
Pseudomonas fluorescens is able to grow on R-benzoin as the sole carbon and energy source because it harbours the enzyme benzaldehyde lyase that cleaves the acyloin linkage using thiamine diphosphate (ThDP) as a cofactor. In the reverse reaction, this lyase catalyses the carboligation of two aldehydes with high substrate and stereospecificity. The enzyme structure was determined by X-ray diffraction at 2.6 A resolution. A structure-based comparison with other proteins showed that benzaldehyde lyase belongs to a group of closely related ThDP-dependent enzymes. The ThDP cofactors of these enzymes are fixed at their two ends in separate domains, suspending a comparatively mobile thiazolium ring between them. While the residues binding the two ends of ThDP are well conserved, the lining of the active centre pocket around the thiazolium moiety varies greatly within the group. Accounting for the known reaction chemistry, the natural substrate R-benzoin was modelled unambiguously into the active centre of the reported benzaldehyde lyase. Due to its substrate spectrum and stereospecificity, the enzyme extends the synthetic potential for carboligations appreciably.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号