首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2319篇
  免费   263篇
  2022年   16篇
  2021年   26篇
  2020年   21篇
  2019年   20篇
  2018年   30篇
  2017年   27篇
  2016年   63篇
  2015年   109篇
  2014年   110篇
  2013年   127篇
  2012年   151篇
  2011年   144篇
  2010年   116篇
  2009年   67篇
  2008年   109篇
  2007年   118篇
  2006年   115篇
  2005年   89篇
  2004年   102篇
  2003年   72篇
  2002年   71篇
  2001年   55篇
  2000年   81篇
  1999年   61篇
  1998年   26篇
  1997年   21篇
  1996年   21篇
  1995年   15篇
  1994年   16篇
  1993年   25篇
  1992年   32篇
  1991年   34篇
  1990年   35篇
  1989年   26篇
  1988年   26篇
  1987年   19篇
  1986年   20篇
  1985年   19篇
  1984年   24篇
  1983年   25篇
  1982年   19篇
  1981年   19篇
  1979年   16篇
  1978年   14篇
  1977年   20篇
  1974年   16篇
  1973年   21篇
  1972年   16篇
  1969年   21篇
  1968年   12篇
排序方式: 共有2582条查询结果,搜索用时 375 毫秒
91.
Progenitors of the zebrafish pronephros, red blood and trunk endothelium all originate from the ventral mesoderm and often share lineage with one another, suggesting that their initial patterning is linked. Previous studies have shown that spadetail (spt) mutant embryos, defective in tbx16 gene function, fail to produce red blood cells, but retain the normal number of endothelial and pronephric cells. We report here that spt mutants are deficient in all the types of early blood, have fewer endothelial cells as well as far more pronephric cells compared to wildtype. In vivo cell tracing experiments reveal that blood and endothelium originate in spt mutants almost exclusive from the dorsal mesoderm whereas, pronephros and tail originate from both dorsal and ventral mesoderm. Together these findings suggest possible defects in posterior patterning. In accord with this, gene expression analysis shows that mesodermal derivatives within the trunk and tail of spt mutants have acquired more posterior identity. Secreted signaling molecules belonging to the Fgf, Wnt and Bmp families have been implicated as patterning factors of the posterior mesoderm. Further investigation demonstrates that Fgf and Wnt signaling are elevated throughout the nonaxial region of the spt gastrula. By manipulating Fgf signaling we show that Fgfs both promote pronephric fate and repress blood and endothelial fate. We conclude that Tbx16 plays an important role in regulating the balance of intermediate mesoderm fates by attenuating Fgf activity.  相似文献   
92.
Reduced FCGR3B copy number is associated with increased risk of systemic lupus erythematosus (SLE). The five FCGR2/FCGR3 genes are arranged across two highly paralogous genomic segments on chromosome 1q23. Previous studies have suggested mechanisms for structural rearrangements at the FCGR2/FCGR3 locus and have proposed mechanisms whereby altered FCGR3B copy number predisposes to autoimmunity, but the high degree of sequence similarity between paralogous segments has prevented precise definition of the molecular events and their functional consequences. To pursue the genomic pathology associated with FCGR3B copy-number variation, we integrated sequencing data from fosmid and bacterial artificial chromosome clones and sequence-captured DNA from FCGR3B-deleted genomes to establish a detailed map of allelic and paralogous sequence variation across the FCGR2/FCGR3 locus. This analysis identified two highly paralogous 24.5 kb blocks within the FCGR2C/FCGR3B/FCGR2B locus that are devoid of nonpolymorphic paralogous sequence variations and that define the limits of the genomic regions in which nonallelic homologous recombination leads to FCGR2C/FCGR3B copy-number variation. Further, the data showed evidence of swapping of haplotype blocks between these highly paralogous blocks that most likely arose from sequential ancestral recombination events across the region. Functionally, we found by flow cytometry, immunoblotting and cDNA sequencing that individuals with FCGR3B-deleted alleles show ectopic presence of FcγRIIb on natural killer (NK) cells. We conclude that FCGR3B deletion juxtaposes the 5′-regulatory sequences of FCGR2C with the coding sequence of FCGR2B, creating a chimeric gene that results in an ectopic accumulation of FcγRIIb on NK cells and provides an explanation for SLE risk associated with reduced FCGR3B gene copy number.  相似文献   
93.
The design, synthesis and characterization of a phosphonate inhibitor of N-acetylneuraminate-9-phosphate phosphatase (HDHD4) is described. Compound 3, where the substrate C-9 oxygen was replaced with a nonlabile CH2 group, inhibits HDHD4 with a binding affinity (IC50 11 μM) in the range of the native substrate Neu5Ac-9-P (compound 1, Km 47 μM). Combined SAR, modeling and NMR studies are consistent with the phosphonate group in inhibitor 3 forming a stable complex with native Mg2+. In addition to this key interaction, the C-1 carboxylate of the sugar interacts with a cluster of basic residues, K141, R104 and R72. Comparative NMR studies of compounds 3 and 1 with Ca2+ and Mg2+ are indicative of a highly dynamic process in the active site for the HDHD4/Mg2+/3 complex. Possible explanations for this observation are discussed.  相似文献   
94.

Purpose

Current estimations of the climate impact from indirect land use change (ILUC) caused by biofuels are heavily influenced by assumptions regarding the biofuel production period. The purpose of this paper is to propose a new method (baseline time accounting) that takes global land use dynamics into account that is consistent with the global warming potential, that is applicable to any phenomenon causing land use change, and that is independent of production period assumptions.

Methods

We consider ILUC in two forms. The first is called “accelerated expansion” and concerns ILUC in regions with an expanding agricultural area. The second is called “delayed reversion” and concerns ILUC in regions with a decreasing agricultural area. We use recent trends in international land use and projections of future land use change to assess how ILUC from biofuels will alter the development in global agricultural land use dynamics compared to the existing trend (i.e., the baseline development). We then use the definition of the global warming potential to determine the CO2 equivalence of the change in land use dynamics.

Results and discussion

We apply baseline time accounting to two existing ILUC studies in the literature. With current trends in global agricultural land use, the method significantly reduces the estimated climate impact in the previous ILUC studies (by more than half). Sensitivity analyses show that results are somewhat sensitive to assumptions regarding carbon sequestration and assumptions regarding postreversion ecosystems.

Conclusions

The global dynamic development in land use has important implications for the time accounting step when estimating the climate impact of ILUC caused by biofuel production or other issues affecting land use. Ignoring this may lead to erroneous conclusions about the actual climate impact of ILUC. Several land use projections indicate that the global agricultural area will keep expanding up to and beyond 2050. We therefore recommend to apply the baseline time accounting concept as an integrated part of future ILUC studies and to update the results on a regular basis.  相似文献   
95.
The structure of F1-ATPase from Saccharomyces cerevisiae inhibited by the yeast IF1 has been determined at 2.5 Å resolution. The inhibitory region of IF1 from residues 1 to 36 is entrapped between the C-terminal domains of the αDP- and βDP-subunits in one of the three catalytic interfaces of the enzyme. Although the structure of the inhibited complex is similar to that of the bovine-inhibited complex, there are significant differences between the structures of the inhibitors and their detailed interactions with F1-ATPase. However, the most significant difference is in the nucleotide occupancy of the catalytic βE-subunits. The nucleotide binding site in βE-subunit in the yeast complex contains an ADP molecule without an accompanying magnesium ion, whereas it is unoccupied in the bovine complex. Thus, the structure provides further evidence of sequential product release, with the phosphate and the magnesium ion released before the ADP molecule.  相似文献   
96.
97.
Several markers identify cancer stem cell-like populations, but little is known about the functional roles of stem cell surface receptors in tumor progression. Here, we show that the endothelial protein C receptor (EPCR), a stem cell marker in hematopoietic, neuronal and epithelial cells, is crucial for breast cancer growth in the orthotopic microenvironment of the mammary gland. Mice with a hypomorphic allele of EPCR show reduced tumor growth in the PyMT-model of spontaneous breast cancer development and deletion of EPCR in established PyMT tumor cells significantly attenuates transplanted tumor take and growth. We find expansion of EPCR+ cancer stem cell-like populations in aggressive, mammary fat pad-enhanced human triple negative breast cancer cells. In this model, EPCR-expressing cells have markedly increased mammosphere- and tumor-cell initiating activity compared to another stable progenitor-like subpopulation present at comparable frequency. We show that receptor blocking antibodies to EPCR specifically attenuate in vivo tumor growth initiated by either EPCR+ cells or the heterogenous mixture of EPCR+ and EPCR- cells. Furthermore, we have identified tumor associated macrophages as a major source for recognized ligands of EPCR, suggesting a novel mechanism by which cancer stem cell-like populations are regulated by innate immune cells in the tumor microenvironment.  相似文献   
98.
Soil organic carbon (SOC) change can be a major impact of land use change (LUC) associated with biofuel feedstock production. By collecting and analyzing data from worldwide field observations of major LUCs from cropland, grassland, and forest to lands producing biofuel crops (i.e. corn, switchgrass, Miscanthus, poplar, and willow), we were able to estimate SOC response ratios and sequestration rates and evaluate the effects of soil depth and time scale on SOC change. Both the amount and rate of SOC change were highly dependent on the specific land transition. Irrespective of soil depth or time horizon, cropland conversions resulted in an overall SOC gain of 6–14% relative to initial SOC level, while conversion from grassland or forest to corn (without residue removal) or poplar caused significant carbon loss (9–35%). No significant SOC changes were observed in land converted from grasslands or forests to switchgrass, Miscanthus, or willow. The SOC response ratios were similar in both 0–30 and 0–100 cm soil depths in most cases, suggesting SOC changes in deep soil and that use of top soil only for SOC accounting in biofuel life cycle analysis (LCA) might underestimate total SOC changes. Soil carbon sequestration rates varied greatly among studies and land transition types. Generally, the rates of SOC change tended to be the greatest during the 10 years following land conversion and had declined to approach 0 within about 20 years for most LUCs. Observed trends in SOC change were generally consistent with previous reports. Soil depth and duration of study significantly influence SOC change rates and so should be considered in carbon emission accounting in biofuel LCA. High uncertainty remains for many perennial systems and forest transitions, additional field trials, and modeling efforts are needed to draw conclusions about the site‐ and system‐specific rates and direction of change.  相似文献   
99.
Parasites causing malaria need to migrate in order to penetrate tissue barriers and enter host cells. Here we show that the actin filament-binding protein coronin regulates gliding motility in Plasmodium berghei sporozoites, the highly motile forms of a rodent malaria-causing parasite transmitted by mosquitoes. Parasites lacking coronin show motility defects that impair colonization of the mosquito salivary glands but not migration in the skin, yet result in decreased transmission efficiency. In non-motile sporozoites low calcium concentrations mediate actin-independent coronin localization to the periphery. Engagement of extracellular ligands triggers an intracellular calcium release followed by the actin-dependent relocalization of coronin to the rear and initiation of motility. Mutational analysis and imaging suggest that coronin organizes actin filaments for productive motility. Using coronin-mCherry as a marker for the presence of actin filaments we found that protein kinase A contributes to actin filament disassembly. We finally speculate that calcium and cAMP-mediated signaling regulate a switch from rapid parasite motility to host cell invasion by differentially influencing actin dynamics.  相似文献   
100.
Plasmodium vivax is the most widely distributed human parasite and the main cause of human malaria outside the African continent. However, the knowledge about the genetic variability of P. vivax is limited when compared to the information available for P. falciparum. We present the results of a study aimed at characterizing the genetic structure of P. vivax populations obtained from pregnant women from different malaria endemic settings. Between June 2008 and October 2011 nearly 2000 pregnant women were recruited during routine antenatal care at each site and followed up until delivery. A capillary blood sample from the study participants was collected for genotyping at different time points. Seven P. vivax microsatellite markers were used for genotypic characterization on a total of 229 P. vivax isolates obtained from Brazil, Colombia, India and Papua New Guinea. In each population, the number of alleles per locus, the expected heterozygosity and the levels of multilocus linkage disequilibrium were assessed. The extent of genetic differentiation among populations was also estimated. Six microsatellite loci on 137 P. falciparum isolates from three countries were screened for comparison. The mean value of expected heterozygosity per country ranged from 0.839 to 0.874 for P. vivax and from 0.578 to 0.758 for P. falciparum. P. vivax populations were more diverse than those of P. falciparum. In some of the studied countries, the diversity of P. vivax population was very high compared to the respective level of endemicity. The level of inter-population differentiation was moderate to high in all P. vivax and P. falciparum populations studied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号