首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2319篇
  免费   263篇
  2022年   16篇
  2021年   26篇
  2020年   21篇
  2019年   20篇
  2018年   30篇
  2017年   27篇
  2016年   63篇
  2015年   109篇
  2014年   110篇
  2013年   127篇
  2012年   151篇
  2011年   144篇
  2010年   116篇
  2009年   67篇
  2008年   109篇
  2007年   118篇
  2006年   115篇
  2005年   89篇
  2004年   102篇
  2003年   72篇
  2002年   71篇
  2001年   55篇
  2000年   81篇
  1999年   61篇
  1998年   26篇
  1997年   21篇
  1996年   21篇
  1995年   15篇
  1994年   16篇
  1993年   25篇
  1992年   32篇
  1991年   34篇
  1990年   35篇
  1989年   26篇
  1988年   26篇
  1987年   19篇
  1986年   20篇
  1985年   19篇
  1984年   24篇
  1983年   25篇
  1982年   19篇
  1981年   19篇
  1979年   16篇
  1978年   14篇
  1977年   20篇
  1974年   16篇
  1973年   21篇
  1972年   16篇
  1969年   21篇
  1968年   12篇
排序方式: 共有2582条查询结果,搜索用时 78 毫秒
51.
Tyrosine phosphorylation of membrane-associated proteins is involved at two distinct sites of contact between cells and the extracellular matrix: adhesion plaques (cell adhesion and de-adhesion) and invadopodia (invasion into the extracellular matrix). Adhesion plaques from chicken embryonic fibroblasts or from cells transformed by Rous sarcoma virus contain low levels of tyrosine-phosphorylated proteins (YPPs) which were below the level of detection in 0.5-microns thin, frozen sections. In contrast, intense localization of YPPs was observed at invadopodia of transformed cells at sites of degradation and invasion into the fibronectin-coated gelatin substratum, but not in membrane extensions free of contact with the extracellular matrix. Local extracellular matrix degradation and formation of invadopodia were blocked by genistein, an inhibitor of tyrosine-specific kinases, but cells remained attached to the substratum and retained their free-membrane extensions. Invadopodia reduced or lost YPP labeling after treatment of the cells with genistein, but adhesion plaques retained YPP labeling. The plasma membrane contact fractions of normal and transformed cells have been isolated form cells grown on gelatin cross-linked substratum using a novel fractionation scheme, and analyzed by immunoblotting. Four major YPPs (150, 130, 81, and 77 kD) characterize invadopodial membranes in contact with the matrix, and are probably responsible for the intense YPP labeling associated with invadopodia extending into sites of matrix degradation. YPP150 may be an invadopodal-specific YPP since it is approximately 3.6-fold enriched in the invasive contact fraction relative to the cell body fraction and is not observed in normal contacts. YPP130 is enriched in transformed cell contacts but may also be present in normal contacts. The two major YPPs of normal contacts (130 and 71 kD) are much lower in abundance than the major tyrosine-phosphorylated bands associated with invadopodial membranes, and likely represent major adhesion plaque YPPs. YPP150, paxillin, and tensin appear to be enriched in the cell contact fractions containing adhesion plaques and invadopodia relative to the cell body fraction, but are also present in the soluble supernate fraction. However, vinculin, talin, and alpha-actinin that are localized at invadopodia, are equally concentrated in cell bodies and cell contacts as is the membrane-adhesion receptor beta 1 integrin. Thus, tyrosine phosphorylation of the membrane-bound proteins may contribute to the cytoskeletal and plasma membrane events leading to the formation and function of invadopodia that contact and proteolytically degrade the extracellular matrix; we have identified several candidate YPPs that may participate in the regulation of these processes.  相似文献   
52.
The processes leading to bacterial colonization on solidwater interfaces are adsorption, desorption, growth, and erosion. These processes have been measured individually in situ in a flowing system in real time using image analysis. Four different substrata (copper, silicon, 316 stainless-steel and glass) and 2 different bacterial species (Pseudomonas aeruginosa and Pseudomonas fluorescens) were used in the experiments. The flow was laminar (Re = 1.4) and the shear stress was kept constant during all experiments at 0.75 N m(-2). The surface roughness varied among the substrata from 0.002 mum (for silicon) to 0.015 mum (for copper). Surface free energies varied from 25.1 dynes cm(-1) for silicon to 31.2 dynes cm(-1) for copper. Cell curface hydrophobicity, reported as hydrocarbon partitioning values, ranged from 0.67 for Ps. fluorescens to 0.97 for Ps. aeruginosa.The adsorption rate coefficient varried by as much as a factor of 10 among the combinations of bacterial strain and substratum material, and was positively correlated with surface free energy, the surface roughness of the substratum, and the hydrophobicity of the cells. The probability of desorption decreased with increasing surface free energy and surface roughness of the substratum. Cell growth was inhibited on copper, but replication of cells overlying an initial cell layer was observed with increased exposure time to the cell-containing bulk water. A mathematical model describing cell accumulation on a substratum is presented.  相似文献   
53.
The structure of phosphatidylinositol in barley (Hordeum vulgare) aleurone layers was investigated by chemical degradation. In vivo myo-[2-3H]inositol-labeled phosphatidylinositol was first converted to glycerophosphoinositol and, subsequently, after removal of the glycerol moiety, to inositol monophosphate. Here, we present data that show that, in addition to the commonly occurring 1,2-diacylglycero-3-(d-myo-inositol-1-phosphate), barley aleurone cells contain a novel second isomer of phosphatidylinositol that differs in structure of the head group.  相似文献   
54.
55.
A new, powerful, synthetic inhibitor of mammalian tissue collagenases and related metalloproteinases is inhibitory to ovulation in perfused rat ovaries. Ovaries of immature rats, primed with 20 IU of eCG, were dissected and perfused with 0.1 micrograms/ml LH and 0.2 mM 3-isobutyl-1-methylxanthine (IBMX) for 20 h. Addition of SC 44463 (N4-hydroxy-N1-[1S [(4-methoxphenyl)methyl]-2-(methylamino)-2-oxoethyl]- 2R-(2-methylpropyl)butane-diamide) at a concentration of 25 nM inhibited ovulation by 55% (9.6 +/- 1.7 ovulations per ovary, mean +/- SEM, compared to a control value of 21.7 +/- 1.7); and 250 nM inhibited ovulation by 75% (5.3 +/- 1.1 ovulations per ovary). We previously showed that the related compound SC 40827 inhibited ovulation by 70% when used at a concentration of 25 microM (Br?nnstr?m et al., Endocrinology 1988; 122:1715-1721). We now show that SC 44463 is 100, 500, and 75 times more powerful than SC 40827 in blocking ovulation, inhibiting action of ovarian interstitial collagenase, and inhibiting action of the small metalloproteinase of the rat uterus, respectively. SC 44463 also inhibits ovarian type IV collagen-digesting activity 50% at a concentration of 18 nM. Ovulation occurs after 9-12 h of perfusion with LH. Compound SC 44463 (25 nM) showed its full inhibitory capacity when added to the medium as late as 7 h after LH, but there was no significant inhibition when it was added at 9 h. This suggests that the major collagenolytic events occur beyond 7 h after stimulation by LH.  相似文献   
56.
Different point mutations have been identified in the T3-binding domain of the c-erbA beta thyroid hormone receptor gene that are associated with variant phenotypes of generalized thyroid hormone resistance (GTHR). In most cases of GTHR, heterozygotes are affected; a single mutant allele results in the inhibition of the function of normal thyroid hormone receptors. We report here a novel genetic abnormality, a 3-basepair (bp) deletion in the T3-binding domain of the beta-receptor in a kindred, S, with GTHR. One patient, S1, was the product of a consanguineous union of two heterozygotes and was homozygous for this defect. Heterozygotes from kindred S harbored a CAC deletion at nucleotides 1295-1297, which resulted in the deduced loss of amino acid residue threonine at codon 332, and they displayed elevated free T4 levels and inappropriately normal TSH levels characteristic of other kindreds with GTHR. However, patient S1, who had two mutant alleles, had markedly elevated TSH and free T4 levels and displayed profound abnormalities in brain development and linear growth. A fibroblast c-erbA beta cDNA extending from codon 175 to stop codon 457 was cloned from patient S1, sequenced, and used to create a full-length mutant cDNA. The kindred S mutant receptor was synthesized in vitro and did not bind T3. This mutant receptor did bind with similar avidity as the wild-type human beta-receptor to thyroid hormone response elements of the human TSH beta (-12 to 43 bp) and rat GH (-188 to -160 bp) genes. Kindred S showed the effect in man of heterozygous and homozygous expression of a dominant negative form of c-erbA beta.  相似文献   
57.
A monoclonal antibody against rat brain type II Ca2+/calmodulin-dependent protein kinase (CaM kinase) precipitates three proteins from Drosophila heads with apparent molecular weights similar to those of the subunits of the rat brain kinase. Fly heads also contain a CaM kinase activity that becomes partially independent of Ca2+ after autophosphorylation, as does the rat brain kinase. We have isolated a Drosophila cDNA encoding an amino acid sequence that is 77% identical to the sequence of the rat alpha subunit. All known autophosphorylation sites are conserved, including the site that controls Ca(2+)-independent activity. The gene encoding the cDNA is located between 102E and F on the fourth chromosome. The protein product of this gene is expressed at much higher levels in the fly head than in the body. Thus, both the amino acid sequence and the tissue specificity of the mammalian kinase are highly conserved in Drosophila.  相似文献   
58.
Endonuclease VII is an enzyme from bacteriophage T4 capable of resolving four-arm Holliday junction intermediates in recombination. Since natural Holliday junctions have homologous (2-fold) sequence symmetry, they can branch migrate, creating a population of substrates that have the branch point at different sites. We have explored the substrate requirements of endonuclease VII by using immobile analogs of Holliday junctions that lack this homology, thereby situating the branch point at a fixed site in the molecule. We have found that immobile junctions whose double-helical arms contain fewer than nine nucleotide pairs do not serve as substrates for resolution by endonuclease VII. Scission of substrates with 2-fold symmetrically elongated arms produces resolution products that are a function of the particular arms that are lengthened. We have confirmed that the scission products are those of resolution, rather than nicking of individual strands, by using shamrock junction molecules formed from a single oligonucleotide strand. A combination of end-labeled and internally labeled shamrock molecules has been used to demonstrate that all of the scission is due to coordinated cleavage of DNA on opposite sides of the junction, 3' to the branch point. Endonuclease VII is known to cleave the crossover strands of Holliday junctions in this fashion. The relationship of the long arms to the cleavage direction suggests that the portion of the enzyme which requires the minimum arm length interacts with the pair of arms containing the 3' portion of the crossover strands on the bound surface of the antiparallel junction.  相似文献   
59.
NMR identification of protein surfaces using paramagnetic probes   总被引:5,自引:0,他引:5  
A M Petros  L Mueller  K D Kopple 《Biochemistry》1990,29(43):10041-10048
Paramagnetic agents produce line broadening and thus cancellation of anti phase cross-peak components in two-dimensional correlated nuclear magnetic resonance spectra. The specificity of this effect was examined to determine its utility for identifying surface residues of proteins. Ubiquitin and hen egg white lysozyme, for which X-ray crystal structures and proton NMR assignments are available, served as test cases. Two relaxation reagents were employed, 4-hydroxy-2,2,6,6-tetramethylpiperidinyl-1-oxy and the gadolinium (III) diethylenetriaminepentaacetate complex ion. Correlations were sought between reagent-produced decreases of side-chain cross-peak volumes in double-quantum-filtered proton correlation (DQF-COSY) spectra and the solvent-exposed side-chain surface area of the corresponding residues. The lanthanide complex produced strong effects ascribable to association with carboxylate groups but was not otherwise useful in delineating surface residues. The nitroxyl, on the other hand, produced clear distinctions among the Val, Leu, and Ile residues that generally paralleled side-chain exposure in the crystal, although consistent correlations were not observed with residues of other types. Although an instance of possible specific protein-nitroxyl association was noted, the nitroxyl appears to be a tool for identifying hydrophobic surface residues.  相似文献   
60.
Mastoparan interacts with the carboxyl terminus of the alpha subunit of Gi   总被引:7,自引:0,他引:7  
Mastoparan, a peptide toxin from wasp venom, stimulates guanine nucleotide binding and hydrolysis by G proteins. To elucidate the site of mastoparan-G protein interaction, we utilized a polyclonal antibody (R16,17) directed against the carboxyl terminus of the Gi alpha subunit to develop a competitive enzyme-linked immunosorbent assay. We investigated the ability of mastoparan to influence R16,17 antibody binding to G protein alpha subunits in a purified preparation of brain Gi and in neutrophil membrane extracts. Mastoparan antagonized the ability of R16,17 to detect G protein alpha subunits with an IC50 of 15 microM in the purified preparation and with an IC50 of 1 microM for the predominant G protein population in membrane extracts. This reduction was not seen when an unrelated peptide or a peptide of similar charge composition to mastoparan was used in place of mastoparan in the assay. Additionally, antibody R16,17 blocked up to 85% of mastoparan-stimulated GTPase activity. Taken together, these data indicate that the interaction of mastoparan with G protein depends in part on the carboxyl terminus of Gi alpha. Pertussis toxin-catalyzed ADP-ribosylation of Gi alpha markedly inhibited mastoparan-stimulated GTPase activity but only slightly attenuated the ability of mastoparan to recognize G protein. These data suggest that ribosylation inhibits mastoparan-induced G protein activation by a mechanism distinct from the ability of mastoparan to physically interact with G protein. Since mastoparan is thought to mimic hormone-liganded receptors, these findings may be applicable to the mechanism of receptor-Gi protein uncoupling that results from ADP-ribosylation of the G protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号