首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2271篇
  免费   259篇
  2022年   15篇
  2021年   26篇
  2020年   21篇
  2019年   19篇
  2018年   30篇
  2017年   27篇
  2016年   64篇
  2015年   107篇
  2014年   105篇
  2013年   123篇
  2012年   151篇
  2011年   144篇
  2010年   114篇
  2009年   60篇
  2008年   107篇
  2007年   114篇
  2006年   113篇
  2005年   86篇
  2004年   101篇
  2003年   71篇
  2002年   70篇
  2001年   54篇
  2000年   79篇
  1999年   60篇
  1998年   26篇
  1997年   19篇
  1996年   19篇
  1995年   13篇
  1994年   15篇
  1993年   26篇
  1992年   31篇
  1991年   33篇
  1990年   35篇
  1989年   25篇
  1988年   25篇
  1987年   19篇
  1986年   19篇
  1985年   19篇
  1984年   24篇
  1983年   25篇
  1982年   18篇
  1981年   18篇
  1979年   16篇
  1978年   14篇
  1977年   20篇
  1974年   17篇
  1973年   21篇
  1972年   16篇
  1969年   21篇
  1968年   12篇
排序方式: 共有2530条查询结果,搜索用时 210 毫秒
871.
Rational drug design via intrinsically disordered protein   总被引:1,自引:0,他引:1  
Despite substantial increases in research funding by the pharmaceutical industry, drug discovery rates seem to have reached a plateau or perhaps are even declining, suggesting the need for new strategies. Protein-protein interactions have long been thought to provide interesting drug discovery targets, but the development of small molecules that modulate such interactions has so far achieved a low success rate. In contrast to this historic trend, a few recent successes raise hopes for routinely identifying druggable protein-protein interactions. In this Opinion article, we point out the importance of coupled binding and folding for protein-protein signalling interactions generally, and from this and associated observations, we develop a new strategy for identifying protein-protein interactions that would be particularly promising targets for modulation by small molecules. This novel strategy, based on intrinsically disordered protein, has the potential to increase significantly the discovery rate for new molecule entities.  相似文献   
872.
Mikheyev AS  Vo T  Mueller UG 《Molecular ecology》2008,17(20):4480-4488
Although historical biogeographical forces, such as climate-driven range shifts, greatly influence the present-day population genetic structure of animals and plants, the extent to which they affect microbial communities remains largely unknown. We examined the effect of postglacial expansion on the population structure of the northern fungus-gardening ant Trachymyrmex septentrionalis and compared it with that of its two microbial mutualists: a community of lepiotaceous fungal cultivars and associated antibiotic-producing Pseudonocardia bacteria. The ant population genetic structure showed signs of population expansion and subdivision into eastern and western phylogroups that likely originated in the Pleistocene - a pattern shared by many other North American taxa found in the same region. Although dispersal limitation was present in all three symbionts, as suggested by genetic isolation increasing with distance, the host's east-west subdivision of population genetic structure was absent from the microbial mutualist populations. While neither the cultivar nor the Pseudonocardia genetic structure was correlated with that of the ants, they were significantly correlated with each other. These results show that biogeographical forces may act differently on macro- and microscopic organisms, even in the extreme case where microbial mutualists are vertically transmitted from generation to generation and share the same joint ecological niche. It may be that historical climate change played a larger role in determining the population structure of the ant hosts, whereas present-day environmental forces, such as pathogen pressure, determine the structure of associated microbial populations.  相似文献   
873.
Physical inactivity is an independent risk factor for cardiovascular disease. Sedentary animals compared to physically active controls exhibit enhanced sympathoexcitatory responses, including arterial baroreflex-mediated sympathoexcitation. Hypotension-induced sympathoexcitation is also associated with the release of vasoactive hormones. We hypothesized that sedentary conditions may enhance release of the vasoactive hormones AVP and ANG II. To test this hypothesis, the humoral response to hypotension was examined in conscious rats after 9-12 wk of sedentary conditions or "normally active" conditions. Normally active conditions were produced by allowing rats access to running wheels in their home cages. Running distance peaked after 4 wk (4.5 +/- 0.7 km/day), and the total distance run after 9 wk was 174 +/- 23 km (n = 25). Similar levels of hypotension were induced in conscious sedentary or physically active animals with the arterial vasodilator, diazoxide (25 mg/kg iv). Control experiments used a saline injection of equivalent volume. Plasma samples were collected and assayed for plasma AVP concentration and plasma renin activity (PRA). Sedentary conditions significantly enhanced resting and hypotension-induced PRA relative to normal physical activity. In contrast, resting and hypotension-induced AVP levels were not statistically different between groups. These data suggest that baroreflex-mediated activation of the renin-angiotensin system, but not AVP secretion, is enhanced by sedentary conditions. We speculate that augmented activation of the renin-angiotensin system may be related to enhanced sympathetic outflow observed in sedentary animals and may contribute to increased risk of cardiovascular disease in the sedentary population.  相似文献   
874.
Sleep deprivation (SD) can suppress cell proliferation in the hippocampal dentate gyrus of adult male rodents, suggesting that sleep may contribute to hippocampal functions by promoting neurogenesis. However, suppression of cell proliferation in rats by the platform-over-water SD method has been attributed to elevated corticosterone (Cort), a potent inhibitor of cell proliferation and nonspecific correlate of this procedure. We report here results that do not support this conclusion. Intact and adrenalectomized (ADX) male rats were subjected to a 96-h SD using multiple- and single-platform methods. New cells were identified by immunoreactivity for 5-bromo-2'-deoxyuridine (BrdU) or Ki67 and new neurons by immunoreactivity for BrdU and doublecortin. EEG recordings confirmed a 95% deprivation of rapid eye movement (REM) sleep and a 40% decrease of non-REM sleep. Cell proliferation in the dentate gyrus was suppressed by up to 50% in sleep-deprived rats relative to apparatus control or home cage control rats. This effect was also observed in ADX rats receiving continuous low-dose Cort replacement via subcutaneous minipumps but not in ADX rats receiving Cort replacement via drinking water. In these latter rats, Cort intake via water was reduced by 60% during SD; upregulation of cell proliferation by reduced Cort intake may obscure inhibitory effects of sleep loss on cell proliferation. SD had no effect on the percentage of new cells expressing a neuronal phenotype. These results demonstrate that the Cort replacement method is critical for detecting an effect of SD on cell proliferation and support a significant role for sleep in adult neurogenesis.  相似文献   
875.
The spread of metastatic tumors to different organs is associated with poor prognosis. The metastatic process requires migration and cellular invasion. The protooncogene c-jun encodes the founding member of the activator protein-1 family and is required for cellular proliferation and DNA synthesis in response to oncogenic signals and plays an essential role in chemical carcinogenesis. The role of c-Jun in cellular invasion remains to be defined. Genetic deletion of c-Jun in transgenic mice is embryonic lethal; therefore, transgenic mice encoding a c-Jun gene flanked by LoxP sites (c-junf/f) were used. c-jun gene deletion reduced c-Src expression, hyperactivated ROCK II signaling, and reduced cellular polarity, migration, and invasiveness. c-Jun increased c-Src mRNA abundance and c-Src promoter activity involving an AP-1 site in the c-Src promoter. Transduction of c-jun−/− cells with either c-Jun or c-Src retroviral expression systems restored the defective cellular migration of c-jun−/− cells. As c-Src is a critical component of pathways regulating proliferation, survival, and metastasis, the induction of c-Src abundance, by c-Jun, provides a novel mechanism of cooperative signaling in cellular invasion.  相似文献   
876.
We have employed the proteomic approach in combination with mass spectrometry to study the immune response of honey bee workers at different developmental stages. Analysis of the hemolymph proteins of noninfected, mock-infected and immune-challenged individuals by polyacrylamide gel electrophoresis showed differences in the protein profiles. We present evidence that in vitro reared honey bee larvae respond with a prominent humoral reaction to aseptic and septic injury as documented by the transient synthesis of the three antimicrobial peptides (AMPs) hymenoptaecin, defensin1, and abaecin. In contrast, young adult worker bees react with a broader spectrum of immune reactions that include the activation of prophenoloxidase and humoral immune responses. At least seven proteins appeared consistently in the hemolymph of immune-challenged bees, three of which are identical to the AMPs induced also in larvae. The other four, i.e., phenoloxidase (PO), peptidoglycan recognition protein-S2, carboxylesterase (CE), and an Apis-specific protein not assigned to any function (HP30), are induced specifically in adult bees and, with the exception of PO, are not expressed after aseptic injury. Structural features of CE and HP30, such as classical leucine zipper motifs, together with their strong simultaneous induction upon challenge with bacteria suggest an important role of the two novel bee-specific immune proteins in response to microbial infections.  相似文献   
877.
Nephropathy is a common microvascular complication of diabetes with a genetic component for disease development. Genetic analyses have implicated multiple chromosomal regions for disease susceptibility but no single locus can account for the majority of the genetic component. Here, we report a genetic analysis of the PLEKHH2 gene that was identified through a single nucleotide polymorphism (SNP) genome-wide association study (GWAS) for association with the development of diabetic nephropathy (DN) in the Genetics of Kidneys in Diabetes (GoKinD) study population. We initially examined the GWAS results from a subset of the GoKinD singleton population based on the two most common HLA diplotypes consisting of 112 cases and 148 controls. We observed two-adjacent markers mapping to the PLEKHH2 locus, rs1368086 and rs725238, each associated at P < 0.001. Additional SNPs were selected for linkage disequilibrium mapping and transmission disequilibrium testing (TdT) in 246 case trio families. A single marker, rs11886047, located upstream of the PLEKHH2 promoter was associated with DN by TdT in the case trios (P = 0.0307), and there was a increase of heterozygous genotypes in cases, relative to controls, from the 601 case and 577 control GoKinD singleton case/control population (P = 0.00256). These findings suggest that PLEKHH2, which has mRNA and protein expression exclusively in the glomerulus, may be a genetic risk factor for susceptibility to DN in the GoKinD population. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
878.
879.
880.
The chemokine receptor, CCR5, acts as a co-receptor for human immunodeficiency virus entry into cells. CCR5 has been shown to be targeted to cholesterol- and sphingolipid-rich membrane microdomains termed lipid rafts or caveolae. Cholesterol is essential for CCL4 binding to CCR5 and for keeping the conformational integrity of the receptor. Filipin treatment leads to loss of caveolin-1 from the membrane and therefore to a collapse of the caveolae. We have found here that sequestration of membrane cholesterol with filipin did not affect receptor signalling, however a loss of ligand-induced internalisation of CCR5 was observed. Cholesterol extraction with methyl-beta-cyclodextrin (MCD) reduced signalling through CCR5 as measured by release of intracellular Ca(2+) and completely abolished the inhibition of forskolin-stimulated cAMP accumulation with no effect on internalisation. Pertussis toxin (PTX) treatment inhibited the intracellular release of calcium that is transduced via Galphai G-proteins. Depletion of cholesterol destroyed microdomains in the membrane and switched CCR5/G-protein coupling to a PTX-independent G-protein. We conclude that cholesterol in the membrane is essential for CCR5 signalling via the Galphai G-protein subunit, and that integrity of lipid rafts is not essential for effective CCR5 internalisation however it is crucial for proper CCR5 signal transduction via Galphai G-proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号